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Abstract. The paper presents results on nanosecond laser ablation of thin films immersed in a 

liquid. The thin films were prepared by consecutive deposition of layers of different metals by 

thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); 

Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared 

films were then placed at the bottom of a glass vessel filled with double distilled water and 

irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This 

resulted in the formation of colloids of the thin films’ material. We also compared the 

processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and 

a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm
2
). The optical 

properties of the colloids were evaluated by optical transmittance measurements in the UV–

VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ 

size distribution. 

1.  Introduction 

The synthesis of metallic and bimetallic nanoparticles (NPs) with controlled size, morphology, and 

composition attracts considerable interest from both the scientific community and the industry because of 

their unique physical and chemical properties [1–4]. A special interest has been devoted to the 

fabrication of multicomponent NPs consisting of noble and ferromagnetic metals with potential 

applications in catalysis, biophotonics and magneto-optics [5–7]. Ag/Co, Ag/Ni, and Au/Ni particles 

show well-expressed plasmon effects combined with magnetic properties [8]. In particular, the 

bimetallic NPs of Ag and Ni can be used as catalysts, electrical contacts, switches, electromagnetic 

wave absorbers, and in plating of conducting materials [9, 10]. Functionalized magnetic particles, such 

as Ni, Fe or magnetite can also be incorporated in Au-based NPs to enhance the efficiency and 

flexibility of drug treatment by applying an external magnetic field [11]. The position of the surface 

plasmon resonance (SPR) of NPs of Au/Ag alloys can be precisely tuned in a wide spectral range by 

varying the Au/Ag ratio. In [12], a linear dependence was reported of the position of the plasmon 

absorption maximum on the amount of one of the metals included. This effect can help in increasing 

the efficiency of the surface-enhanced Raman spectroscopy, the photothermal cell therapy, and the 

bio-imaging based on such nanostructures.  

                                                      
3
 To whom any correspondence should be addressed. 

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

20th International Summer School on Vacuum, Electron and Ion Technologies IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 992 (2018) 012046  doi :10.1088/1742-6596/992/1/012046

 

 

 

 

 

 

The preparation of bimetallic NPs is based on different techniques; the most popular among them 

were reported in [13]: wet chemical synthesis, photochemical synthesis, sputter deposition, 

sonochemical synthesis, electroless plating, and electrochemical synthesis. However, these synthesis 

techniques usually involve several steps and require toxic reagents.  

The method known as pulsed laser ablation of a target in liquid (PLAL) has emerged as one of the 

most interesting techniques of preparing nanostructures in a wide variety of liquids, since it is a 

simple, environmentally friendly, inexpensive and clean procedure [14-16]. Its most important 

advantage is the fact that the resulting colloidal NPs are chemically pure, containing elements of the 

target and the liquid only. A disadvantage of the PLAL method is the relatively broad size distribution 

of the NPs obtained compared to the NPs synthesized via chemical methods. However, it has been 

reported [17] that laser ablation of thin metal films could result in the formation of NPs with a narrow 

size distribution; i.e., this drawback can be overcome. 

In the work presented, we applied laser ablation in a liquid in a configuration that allows easy 

fabrication of colloidal bimetal NPs. For this purpose, thin films were previously deposited on a glass 

substrate by consecutive deposition of two layers of different metals (Au, Ag and Ni). The first layer 

was deposited by thermal evaporation, a method characterized by fast and relatively easy 

implementation, allowing deposition of large surfaces. The second layer was deposited by the classical 

pulsed laser deposition (PLD) technique. It allows one to deposit films with different thickness by 

controlling the laser radiation parameters – number of pulses, laser fluence and wavelength. The 

multicomponent films produced were then immersed in double distilled water and irradiated by ь 

nanosecond Nd: YAG laser. In another experiment, we followed the influence of the film thickness on 

the morphology and size distribution of the NPs formed in the solution. For this purpose, laser ablation 

of a thin Au film and a Au target in water was performed under identical experimental conditions. The 

morphology, composition and optical properties of the colloidal NPs prepared were studied and 

discussed.  

2.  Experimental 

The preparation of the colloidal metal and bimetallic NPs was carried out in two steps. In the first one, 

we prepared thin Au, Ni/Ag, Ni/Au, and Ag/Au films. The second step consisted in ablation of thin 

films in double distilled water, which resulted in the production of colloidal NPs. The multicomponent 

films preparation involved a consecutive deposition of two layers of different metals on glass 

substrates. The first layer was formed by thermal evaporation, and the second, by the classical on-axis 

PLD technique, using the third harmonic (355 nm) of a Nd:YAG laser (pulse duration 15 ns, repetition 

rate 10 Hz, fluence 1.5 J/cm
2
. Both films were deposited in vacuum at an ambient pressure of about 

10
−3

 Pa for six minutes. The thickness of the multicomponent films thus produced was measured by 

optical profilometer to be in the range of 160 ÷ 200 nm.  

The thin-film samples were placed at the bottom of a glass vessel under 5 mm of double distilled 

water and ablated by the same Nd:YAG laser, whose third harmonic was focused on the metal film 

surface by a fused quartz lens and scanned by an XY stage for 5 min. The laser fluence was chosen to 

be 5 J/cm
2
 to avoid optical breakdown in the liquid, which would drastically change the laser-target 

interaction and reduce the efficiency of the ablation process. The absorbance spectra of the colloids 

were recorded immediately by a UV–Vis spectrometer (Ocean Optics HR 4000) in the 300 – 900 nm 

range. The nanostructures in the dried colloids were visualized by a transmission electron microscope 

(JEOL JEM 2100, accelerating voltage of 200 kV). 

3.  Results and discussion 

3.1.  Laser ablation of bulk target and thin film  

We first studied the influence of the film thickness on the size distribution of the NPs formed during 

laser ablation in water. We ablated a Au bulk target (purity of 99.99 %, thickness of ~1 mm) and a Au 

thin film (deposited by thermal evaporation, thickness of 120 nm) under the conditions described 
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above. The TEM images of the dried colloids are presented in figure 1, (a) and (b), with the particles 

size distribution histograms shown on the right-hand side. The predominantly spherical or spherical-

like shape of the NPs is evident in both TEM images, which is typical of particles formed in a liquid 

environment [18]. The histogram of the size distribution of the particles obtained by ablation of the 

bulk target revealed a mean particles size of 7.2 nm, with a relatively high standard deviation of 

5.7 nm. In the case of the thin Au film (figure 1-b), the mean size of the formed Au NPs was 4.1 nm 

and the standard deviation, 1.5 nm. Moreover, in the case of bulk target ablation, large particles with 

dimensions over 500 nm were also observed (inset in figure 1-a). Generally, the ablation of the thin 

film yielded NPs with a smaller mean size and a more uniform (narrower) size distribution compared 

to the NPs produced by ablation of a bulk target. 

 

 

Figure 1. TEM images and corresponding histograms of the particles size 

distribution of Au nanoparticles produced by laser ablation of Au bulk 

target (a) and Au thin film (b) in water. 

 

The optical absorption spectra of the colloids produced by ablation of the bulk target and the thin 

film are presented in figure 2. A single SPR band in the 500  600 nm range, characteristic of the 

presence of nanosized Au particles, is seen in both spectra. The slight red-shift and the higher intensity 

 

 

 

 

 

 

Figure 2. Optical absorption 

spectra of colloids produced by 

laser ablation of Au bulk target 

and Au thin film in water at 

laser wavelength of 355 nm and 

laser fluence of 5 J/cm
2
. 
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of the SPR maximum in the spectrum of the colloid fabricated by ablation of the bulk target, 

compared to the thin-film case, could be attributed to the larger mean size of the NPs in the former 

case [19]. 

3.2.  Laser ablation of multicomponent thin films  

In this section we consider the laser ablation of multicomponent thin films of different metals. 

Figure 3 shows the TEM images and the corresponding size-distribution histograms of the NPs 

produced by laser ablation of Ni/Au (a), Ag/Au (b) and Ni/Ag (c) thin films in water. Formation of 

separated spherical and spheroidal shaped NPs with a relatively narrow size distribution is observed 

in the case of ablation of Ni/Au (top layer/bottom layer) thin film (figure 3-a). The histogram of the 

particle size distribution indicates a mean particles diameter of 3.8 nm and a standard deviation of 

1.4 nm. In the case of Ag/Au thin-film ablation, besides spherical NPs, nanostructures with a chain-

like shape (nanowires) are also observed (figure 3-b). The mean size of the spherical NPs and the 

particles forming the nanowires is 5.2 nm and the standard deviation is 2.1 nm. These elongated 

nanostructures are probably formed by joining of particles already created in the colloid. The laser 

wavelength used (355 nm) falls within the absorption band of the Ag and Au NPs. Thus, the 

absorption of laser radiation by the NPs may lead to partial melting of the particles’ surface, whose 

melting temperature is significantly lower than that of the bulk material [20]. The shape of the 

particles in the case of ablation of the Ni/Ag thin film is predominantly spherical or spheroidal 

(figure 3-c). However, it should be noted that the larger particles have a rounded and asymmetrical 

shape, which is probably due to aggregation of smaller particles at a later stage, after the 

condensation of the plasma plume. According to the histograms, the mean particle size and the 

standard deviation are 19.4 nm and 16.1 nm, respectively. 

The specific properties of the colloidal nanostructures prepared were explored by optical 

transmission measurements. Figure 4 shows the optical absorption spectra of the colloids produced 

by ablation of Ni/Au, Ag/Au and Ni/Ag thin films in water. It should be mentioned that the 

concentration of the particles in the colloidal solution is relatively low in all cases considered.  A 

single plasmon band with a maximum located at 450 nm is observed in the spectrum of the NPs 

produced by ablation of the Ag/Au film. One should also bear in mind that the position of this SPR 

band falls in between those related to pure Au and Ag NPs [19]. This fact confirms the fabrication 

of bimetallic NPs [21] and the absence of monometallic Au and Ag NPs. Further, it is well known 

that the Ag/Au alloy phase is stable and can exist in a solid or liquid state. Therefore, Au-Ag alloy 

NPs are formed as a result of ablation of the bimetallic Ag/Au films. Two absorbance peaks with 

positions at 416 nm and 574 nm are observed in the optical spectrum of the colloid obtained by 

ablation of the Ni/Ag film. It is known that pure Ag NPs exhibits SPR absorption around 400 nm 

[19], while there is some controversy about the optical absorption of pure Ni NPs. Creighton et al. 

[22] have calculated the spectrum of Ni NPs and found a single SPR between 300 nm and 400 nm. 

In what concerns experimental works, Lee et al. have not reported any absorption band for Ni NPs 

[9]. However, Xiang et al. [23] and Carja et al. [24] have found absorption bands around 370 nm 

related to oxidized nickel nanoparticles, as well as a broad absorption band at 550–700 nm related to 

absorptions of nanostructures containing Ni
2+

 ions. 

Nevertheless, the main reason for the appearance of an absorption band at 416 nm is excitation of 

SPR of Ag-containing NPs. The position of this band corresponds to the presence of NPs with sizes 

up to 60 nm in the solution [19]. The histogram in figure 3-c confirms that most of the NPs formed 

have such dimensions. The appearance of a second peak at 574 nm could be due to two factors: the 

presence of NPs with significantly larger sizes (over 80 nm) and particles with a shape deviating 

from spherical. Both statements are confirmed by the TEM image in figure 3-c. It thus appears that 

additional studies are necessary to clarify the nature and composition of the nanostructures obtained 

in the case of ablation of Ni/Ag thin films. In the optical absorption spectrum of the NPs produced 

by ablation of the Ni/Au thin film, a wide absorbance band with a maximum at 467 nm is seen. The 

position of this band is blue-shifted with respect to the SPR band of pure Au NPs. Similar shifting of 
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the SPR band of Au-containing NPs has already been seen in the spectrum of the nanostructures obtained 

by ablation of the Ag/Au film. The reason for this behavior could be the same, namely, formation of 

alloyed NPs, in this case Ni-Au. However, further research is necessary to confirm this statement. 

 

 
 

Figure 3. TEM images and corresponding size distribution histograms of 

nanoparticles produced by laser ablation in water of multicomponent thin 

films: Ni/Au (a), Ag/Au (b) and Ni/Ag (c). The ablation is performed by 

using laser wavelength of 355 nm and laser fluence of 5 J/cm
2
. 

 

 

 

 

 

 

Figure 4. Optical absorption 

spectra of colloids produced by 

laser ablation of multicomponent 

(Ni/Ag, Ni/Au, and Ag/Au) thin 

films in water at the laser 

wavelength of 355 nm and laser 

fluence of 5 J/cm
2
. 



6

1234567890 ‘’“”

20th International Summer School on Vacuum, Electron and Ion Technologies IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 992 (2018) 012046  doi :10.1088/1742-6596/992/1/012046

 

 

 

 

 

 

4.  Conclusions 

We presented the basic characteristics of a method for synthesizing multicomponent colloidal 

nanostructures. The method is based on laser ablation in double distilled water of a bimetallic thin film 

prepared by a consecutive deposition of layers from different metals by thermal evaporation and PLD 

on a glass substrate. TEM analysis reveals that the ablation of the Ag/Au film leads to the formation of 

both nanowires and spherical NPs, with their size ranging from 2 nm to 20 nm. The optical absorption 

spectrum of the colloid produced by ablation of the Ag/Au film reveals that the SPR maximum of the 

resulting NPs lies between the resonance maxima of pure Ag and Au NPs. This demonstrates that the 

NPs obtained are composed of both Au and Ag. In the case of Ni/Au thin-film ablation, spherical NPs 

with a relatively small size (up to 10 nm) are predominantly observed. In contrast, the ablation of the 

Ni/Ag film results in the formation of larger NPs with a broad size distribution and asymmetrical 

shape. Also, the Au thin-film ablation results in producing NPs with a more uniform size distribution 

compared to that of NPs formed by ablation of the corresponding bulk target. The method proposed 

appears to be an efficient alternative to the known methods of fabrication of bimetal NPs in solutions. 

Acknowledgments 

The work was supported under project DFNP-17-117 “Preparation of complex colloidal 

nanostructures by laser ablation of thin films and structures in liquid” under the Assistance of Young 

Scientists Program of the Bulgarian Academy of Sciences. 

References 

[1] Addato S D, Grillo V, Altieri S, Tondi R, Valeri S and Frabboni S 2011 J. Phys.: Condens. 

Matter 23 175003 

[2] Xiao Q, Yao Z, Liu J, Hai R, Oderji H Y and Ding H 2011 Thin Solid Films 519 7116 

[3] Xia L, Hu X, Kang X, Zhao H, Sun M and Cihen X 2010 Colloids Surf., A 367 96 

[4] Guo H, Chen Y, Chen X, Wen R, Yue G-H and Peng D-L 2011 Nanotechnol. 22 195604 

[5] Ortigoza M A and Rahman T S 2008 Phys. Rev. B 77 195404 

[6] Wang L L and Johnson D D 2009 J. Am. Chem. Soc. 39 14023  

[7] Kilimis D A and Papageorgiou D G 2010 Eur. Phys. J. D 58 189  

[8] Gaudry M, Cottancin E, Pellarin M, Lermé J, Arnaud L, Huntzinger J R, Vialle J L, Broyer M, 

Rousset J L, Treilleux M and Mélinon P 2003 Phys. Rev. B 67 155409  

[9] Lee C-C, Cheng Y-Y, Chang H Y and Chen D-H 2009 J. Alloys Compd. 480 674 

[10] Ahmed J, Ramanujachary K V, Lofland S E, Ruriato A, Gupta G, Shivaprasad S M and Ganguli 

A K 2008 Colloids Surf. A 331 206 

[11] Gould P 2004 Mater. Today 2 36 

[12] Link S, Wang Z L and El-Sayed M A 1999 J. Phys. Chem. B 103 3529 

[13] Major K J, De C and Obare S O 2009 Plasmonics 4 61 

[14] Amendola V and Meneghetti M 2013 Phys.Chem. Chem. Phys. 15 3027 

[15] Zeng H, Du X-W, Singh S C, Kulinich S A, Yang S, He J and Cai W 2012 Adv. Funct. Mater. 

22 1333 

[16] Nikov R G, Nedyalkov N N, Atanasov P A and Karashanova D B 2017 Appl. Phys. A 123 490 

[17] Amoruso S, Nedyalkov N N, Wang X, Ausanio G, Bruzzese R and Atanasov P A 2014 Thin 

Solid Films 550 190 

[18] Zhu X P, Suzuki T, Nakayama T, Suematsu H, Jiang W and Niihara K 2006 Chem. Phys. Lett. 

427 127  

[19] Kreibig U and Vollmer M 1995 Optical properties of metal clusters (Berlin: Springer-Verlag)  

[20] Sakai H 1996 Surf. Sci. 351 285 

[21] Shin K S, Kim J H, Kim I H and Kim K 2012 J. Nanopart. Res. 14 735  

[22] Creighton J A and Eadon D G 1991 J. Chem. Soc., Faraday Trans. 2 87 3881 

[23] Xiang X, Zu X T, Zhu S, Zhang C F and Wang L M 2006 Nucl. Instrum. Methods Phys. Res., 

Sect. B 250 229 

[24] Carja G, Nakajima A, Dranka C and Okada K 2010 J. Nanopart. Res. 12 3049 


