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Abstract. A one-dimensional two-fluid model is presented and used for numerical analysis of 
the asymptotic two-scale limit of the plasma-wall transition. Numerical results confirm that 
when the problem is treated on the pre-sheath scale, the sheath edge is determined by the 
electric field singularity. When the problem is approached on the sheath scale, electric field at 
the sheath edge must be larger than zero in order to obtain any solutions of the model 
equations. In this case the Bohm criterion is determined by two parameters: the electric field 
and the ion velocity at the sheath edge. 

1. Introduction 

The plasma-wall transition is one of the oldest in plasma physics [1,2]. A widely accepted of this 
problem can be summarized in the following way. If neutral plasma is bounded at least on one side by 
a planar wall that absorbs all particles that reach it and is biased negatively with respect to the plasma 
potential, a transition layer is formed between the “unperturbed” plasma and the wall, when the 
potential drop takes place. The “unperturbed” plasma is neutral, its potential is zero and there is no 
electric field present in such plasma. The transition layer can be divided into 2 parts. The first part is 
called the pre-sheath. In this region the plasma is neutral, but a finite electric field exists in this region, 
which accelerates positive particles (ions) towards the wall and negative particles (electrons and 
possibly negative ions) in the opposite direction. When the velocity of the collective ion motion 
towards the electrode reaches the ion sound velocity, plasma neutrality breaks down and a space-
charge dominated region is formed. This region is called the sheath. In many plasmas the extension of 
the pre-sheath is much larger than the dimension of the sheath. The length scale L of the pre-sheath is 
usually some characteristic length that governs the binary processes in this region – usually the mean 
free path for most frequent collisions. The length scale of the sheath on the other hand is by the rule 
the Debye length D, which gives the distance at which the potential perturbation introduced in the 
plasma is shielded. The ratio of this two lengths  = D/L is sometimes called the neutrality 
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parameters. The larger is this parameter, stronger local violations of plasma neutrality can occur. In the 
asymptotic 2 scale limit [1], neutrality parameters goes to zero   0, since L >> D. In this limit the 
analysis of the pre-sheath and of the sheath can be completely separated. In the limit   0 the 
boundary between the pre-sheath and the sheath is defined very sharply and it is called the sheath 
edge. When the sheath edge is approached from the pre-sheath side, electric field gradually increases 
and becomes infinite (has a singularity) at the sheath edge. When the sheath edge is approached from 
the sheath side, electric field gradually decreases and becomes zero at the sheath edge.  
 In this work the asymptotic two-scale limit of the plasma-wall transition is studied numerically 
using a one-dimensional, steady state, two-fluid model. It is assumed that plasma consists only of 
electrons and just one species of singly charged positive ions. In the next section the model is 
presented. In section 3 complete solutions of the model for finite  are shown first and then the pre-
sheath and the sheath region are studied separately by simply inserting  = 0 into the model equations. 
In section 4 some conclusions are presented. 

2. Model 

The model is based on a one-dimensional two-fluid model in steady state: 
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  (1)  

Here mi is the ion mass, ui is the ion fluid velocity, ni is the ion density, e0 is the elementary charge, E 
is the electric field, pi is the ion pressure, Si is the ion source term, Ai is the ion elastic collision term, 
which gives the momentum which is transferred from ions to electrons per unit time and per unit 
volume because of their elastic collisions with electrons,  is the potential, me is the electron mass, ue 
is the electron fluid velocity, ne is the electron density, pe is the electron pressure, Se is the electron 
source term, Ae is the electron elastic collision term, which gives the momentum which is transferred 
from electrons to ions per unit time and per unit volume because of their elastic collisions with ions, 
Mi is the power density that the ions receive through external heating, Bi gives the density of kinetic 
energy that is transferred from ions to electrons per unit time because of elastic collisions and 0 is the 
permittivity of the free space. Terms Ai and Ae which describe the exchange of momentum between 
ions and electrons because of elastic collisions are given by: 

    ,  .i e e ie i e e e e ie e iA m n f u u A m n f u u        (2) 

Here fie is the frequency of elastic momentum exchange collisions between ions and electrons 
(coulomb collisions) and fie is given by [3]: 

 
 

4
0

3/ 23/2 2
0

2
ln .

12
i

ei

e

e n
f

m kT 
    (3) 



3

1234567890 ‘’“”

7th International Workshop and Summer School on Plasma Physics (IWSSPP'16) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 982 (2018) 012005  doi :10.1088/1742-6596/982/1/012005

 

 

 

 

 

 
Here k is the Boltzmann constant, T is the mean value of the ion temperature Ti and the electron 
temperature Te: 

 ,
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i eT T
T


   (4) 

and ln is the coulomb logarithm, given by: 
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Here n0 is the density of the unperturbed plasma far away from the electrode. The term Bi is given by 
[3]: 
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The source terms Si and Se give the difference between the number of created and annihilated ions and 
electrons per unit volume and per unit time. Since in our model there are only electrons and just one 
species of singly charged positive ions, it is clear that source terms for both particle species must be 
identical, Si = Se. The assumed form depends of the main mechanism of ionization. If the new electron 
ion pairs are mainly created by ionizing collisions between electrons and neutral atoms, it can be 
assumed that the source term is proportional to the local electron density:   

                            
 

.e
e i

n x
S S


                                                              (7)  

The ionization time - takes into account also the annihilation of both particle species by 
recombination. The external heating term Mi can be assumed to be a given constant. 
 The closure of the system (1) is made by the following assumptions. First, the electrons are 
assumed to be isothermal, so the electron pressure gradient is expressed by: 

     ,   .e e
e e e e

dp dn
p x n x kT kT

dx dx
    (8) 

Second, it is assumed that the ion heat flux is zero and consequently it does not appear in the fifth 
equation of the system  (1). So the ion pressure gradient term is expressed as: 
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Following Kuhn et al [4] the polytropic function (x) has been defined: 
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The following variables are introduced: 
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  (11) 

If the space coordinate x is normalized to the ionization length L, and the equations (2) - (9) are taken 
into account, the system of the model equations reads: 
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  (12) 

If on the other hand the space coordinate x is normalized to the Debye length D, the system of 
equations becomes: 
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In the asymptotic two-scale limit  = 0 is inserted into systems of equations (12) and (13). The system 
(12) remains almost the same: 
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The system (13) on the other hand changes considerably: 
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In the next section some numerical solutions of the systems of equation (12) - (15) are examined. 

3. Results 
The systems of equation (12) - (15) are strongly nonlinear, so only numerical solutions can be found. 
Each of the systems is a system of 8 ordinary differential equations for 8 unknown functions of X or . 
For a unique solution also 8 boundary conditions – this means values of the unknown functions at X = 
 = 0 - must be specified. Unfortunately here some compromises must be made between physical 
requirements and limitations imposed by mathematical properties of the systems (12) - (15). In the 
unperturbed plasma the potential is zero and there should be no electric field. This gives the 
conditions: (0) = (0) = (0) = 0. At the same place the plasma must be neutral with normalized 
density of ions and electrons, so Ni(0) = Ne(0) = 1. Next are the ion and electron velocity. In the 
unperturbed region of the plasma there should be no directed ion or electron flow, so this would 
impose zero velocities at X =  = 0. But it can be shown [5] that a value Vi = 0 results in a singularity 
by division with zero. So Vi(0) > 0 must be selected. For the plots shown in Fig. 1 Vi(0) = Ve(0) = 10-7 
is selected.  In this work we assume that ions are born at rest, so (0) = Pi(0) = 0 is selected. It can 
also be shown [5] by combining the continuity equations and equations of motion for the ions and 
electrons that the systems (12), (13) and (15) become singular whenever Vi  Vith or Ve  Veth. Here Vith 
and Veth are ion and electron thermal velocity, given by: 
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The system (14) on the other hand becomes singular when ion and electron velocity reach the values: 
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slightly above the corresponding ion sound velocity if monotonic solutions are to be obtained. For 
larger values of the electric field at the sheath edge the ion velocity at the sheath edge can be even 
slightly smaller than the corresponding ion sound velocity. 
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