Variational principles for Lax fifth-order equation and the (2+1) dimensional potential KdV equation

To cite this article: Z-L Tao 2008 J. Phys.: Conf. Ser. 96 012210

View the article online for updates and enhancements.
Variational Principles for Lax Fifth-order Equation and the (2+1) Dimensional Potential KdV Equation

Zhao-Ling Tao

College of Mathematics & Physics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
Email: zaolingt@nuist.edu.cn

Abstract. Using the semi-inverse method proposed by Ji-Huan He, variational principles are established for two nonlinear equations arising in physics, i.e., the Lax fifth-order equation and the (2+1) dimensional potential KdV equation.

1. Introduction

Recently a large amount of work has been done on the variational theory and its applications [1-15]. Here, we use the Lax fifth-order equation [16] and the (2+1) dimensional potential KdV equation [17] as examples to show how to establish variational formulations using the semi-inverse method proposed by Ji-Huan He [2].

2. Variational Formulations

2.1 The Lax fifth-order equation

Consider the Lax fifth-order equation [16]

\[u_t + 30u^2u_x + 20uu_{x2} + 10uu_{x3} + u_{x5} = 0, \]

(1)

We introduce a special function \(\Phi \) defined as

\[\Phi_x = -u, \]

(2)

\[\Phi_t = 10u^3 + 10uu_{x2} + 5(u_x)^2 + u_{x4}, \]

(3)

so that Eq. (1) is automatically satisfied. We will apply the semi-inverse method [2-6] to search for the needed variational formulation:

\[J(u, \Phi) = \int \int L \, dx \, dt. \]

(4)

Here \(L \) is a trial Lagrangian defined by

\[L = u\Phi_x + \left(10u^3 + 10uu_{x2} + 5(u_x)^2 + u_{x4}\right)\Phi_x + F(u), \]

(5)

where \(F \) is an unknown function of \(u \) and/or its derivatives. The merit of the trial Lagrangian is that the stationary condition with respect to \(\Phi \) leads to (1).

Now the stationary condition with respect to \(u \) is
\[\Phi_x + 30u^2\Phi_x + 10u_2\Phi_x - 10(u_x\Phi_x)_x + (10u\Phi_x)_x + \Phi_{5x} + \frac{\delta F}{\delta u} = 0. \] \hfill (6)

Here, \(\delta F / \delta u \) is called He’s variational derivative with respect to \(u \).

Concerning (2) and (3), we set
\[\frac{\delta F}{\delta u} = -(\Phi_i + 30u^2\Phi_x + 10u_2\Phi_x - 10(u_x\Phi_x)_x + (10u\Phi_x)_x + \Phi_{5x}) \]
\[= 20u^3 + 5(u_x)^2 + 10uu_{xx}. \] \hfill (7)

So, the unknown \(F \) can be determined as
\[F_1 = 5u^4 - 5(u_x)^2u, \] \hfill (8)

or
\[F_2 = 5u^4 + \frac{5}{2}u^2u_{xx}. \] \hfill (9)

Therefore, we obtain the following variational formulation
\[J_1(u, \Phi) = \int \left\{ u\Phi_i + (10u^3 + 10uu_{xx} + 5(u_x)^2 + u_{4x}) \Phi_x + 5u^4 - 5(u_x)^2u \right\} dx dt, \] \hfill (10)

or
\[J_2(u, \Phi) = \int \left\{ u\Phi_i + (10u^3 + 10uu_{xx} + 5(u_x)^2 + u_{4x}) \Phi_x + 5u^4 + \frac{5}{2}u^2u_{xx} \right\} dx dt. \] \hfill (11)

2.2 KdV equation

The (2+1) dimensional potential KdV equation \cite{17} is given by
\[\{u_t + au(u_x)^2 + bu_{3x}\}_x + ku_{yy} = 0, \] \hfill (12)

where \(a, b, \) and \(k \) are constants.

Similarly we obtain the following variational formulations
\[J_1 = \int \left\{ \frac{1}{2}uu_{xx} - \frac{a}{3}u_x^2u_{3x} + \frac{b}{2}(u_{2x})^2 + \frac{k}{2}uu_{yy} \right\} dx dy dt, \] \hfill (13)

\[J_2 = \int \left\{ \frac{1}{2}uu_{xx} - \frac{a}{3}u_x^2u_{3x} - \frac{b}{2}u_{x3}u_{xx} + \frac{k}{2}uu_{yy} \right\} dx dy dt, \] \hfill (14)

\[J_3 = \int \left\{ -\frac{1}{2}u_xu_t - \frac{a}{3}u_x^2u_{3x} + \frac{b}{2}(u_{2x})^2 + \frac{k}{2}uu_{yy} \right\} dx dy dt, \] \hfill (15)

and
\[J_4 = \int \left\{ -\frac{1}{2}u_xu_t - \frac{a}{3}u_x^2u_{3x} - \frac{b}{2}u_{x3}u_{xx} + \frac{k}{2}uu_{yy} \right\} dx dy dt. \] \hfill (16)

3. Conclusion

We obtain the variational formulations for the discussed equations, which might find some potential applications.

Acknowledgments: This work is supported by Nanjing University of Information Science and Technology (Y626; JG032006J03).

References