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Abstract. We propose new deterministic and stochastic models for synchronization of clocks
in nodes of distributed networks. An external accurate time server is used to ensure convergence
of the node clocks to the exact time. These systems have much in common with mathematical
models of opinion formation in multiagent systems. There is a direct analogy between the time
server/node clocks pair in asynchronous networks and the leader/follower pair in the context
of social network models.

1. Agreement algorithms for distributed networks
Distributed algorithms have a variety of applications in computer science [1], mobile multiagent
systems [2, 3], biology [4, 5], social network dynamics [6, 7] and are also important for
physicists [8, 9] interested in modeling of coordinated behavior. The present study is devoted
to a special class of distributed algorithms adapted to the local clocks synchronization in
asynchronous networks and to convergence to a leader opinion in large social networks. From
the mathematical point of view, as we will soon show, the both problems lead to the same type
of linear iterative algorithms

x(s) = W (s)x(s− 1) +D(s)δ(s), s = 1, 2, . . . , (1)

where x ∈ RN is a state of an N -node network, δ(s) ∈ RN is a random noise vector added on
step s of the algorithm, W (s) and D(s) are nonnegative N × N -matrices to be precised later.
Proposed models belong to (or, it would be better to say, are modifications of) famous agreement
algorithms [10] known also as network consensus (NC) algorithms. One says that the network
x(s) reaches a consensus if for any initial state x(0) there is c ∈ R1 such that x(s) → c1 as
s → ∞. Here and henceforth 1 denote a colunm vector of all ones. Let MN be the set of all

real N ×N -matrices. We write A = (ajk)Nj,k=1 ∈ M
(+)
N and call A nonnegative if A ∈ MN and

all ajk ≥ 0. We call A a stochastic matrix and write A ∈M st

N if A ∈M (+)
N and A1 = 1.

DeGroot [6] proposed the algorithm x(s) = Ax(s− 1) where A ∈M st

N . It can be considered
as a deterministic time invariant version of (1) and thus this is the simplest agreement algorithm.
DeGroot interpreted it as a model of reaching a common decision in a group of experts by pooling
their individual opinions. Technically the analysis of the consensus problem can be based on the

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

Computer Simulations in Physics and beyond (CSP2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 955 (2018) 012038  doi :10.1088/1742-6596/955/1/012038

discrete Markov chains theory (as in [6]) or on the direct study of powers An in the framework
of the Perron-Frobenius theory. A condition for a consensus to be reached was given in [6] in
terms the matrix powers An.

While in [6] there was no word network, it is straightforward to introduce a digraph G = (N , E)
with the set of vertices N = {1, . . . , N} and the set E of directed edges (m1,m2) such that
am1m2 > 0, m1 6= m2. Denote by Oj := {k : ajk > 0} the set of neighbours of a node j in the
graph G. Hence the DeGroot algorithm takes the form xj(s) =

∑
k∈Oj

ajk xk(s − 1) and has

the meaning of averaging of the values xk(s − 1). We may say that the entry ajk quantifies
the importance of the value of xk(s− 1) for evaluation of xj(s). For this reason A is called the
interconnection matrix. If |Oj | < |N | for all j then the network is called distributed [11].

Cybenko [12] considered a multiprocessor network and studied a dynamics load balancing

model x(s) = Ax(s−1)+δ(s) with symmetric A ∈M st

N and independent identically distributed
(i.i.d.) noise vectors δ(s). Some optimization problem for a similar model was considered in [13].

Vicsek et al. [8] introduced and numerically studied a model of moving particles where the
velocity of the particles is determined by a simple rule and random fluctuations. The simple
rule is that at each time step a given particle driven with a constant absolute velocity assumes
the average direction of motion of the particles in its neighborhood of radius r. Depending
on the density and a noise strength parameter the model exhibits such rich behavior as
clustering, transport and phase transition. The Vicsek model (VM) immediately became very
popular. In [2] the authors analytically studied a linearized deterministic version of the VM and
found conditions when all particles reach an agreement on direction of motion. An agreement
algorithms of [2] has the form θ(s) = A(s)θ(s − 1) where θj is the direction of the particle j
and the sequence of matrices {A(s)}s≥1 reflects a changing topology of the network. The spirit
of the VM suggests

ajk(s) =
1 (|qk(s)− qj(s)| ≤ r)∑N

m=1 1 (|qm(s)− qj(s)| ≤ r)
where qj is the position of the particle j. However, the paper [2] deals with abstract sequences
{A(s)}s≥1 taken from a finite set of symmetric stochastic matrices {A1, . . . , AM}. The above
mentioned sufficient conditions were given purely in terms of this time-varying topology, i.e., in
terms of connectivity properties of the sequence of graphs {G(s)}. This approach was developped
by other authors [14, 15]. Another result of the paper [2] is related to the “leader-followers”
assumption and is important for the opinion dynamics modeling. According to this assumption
the particle 1 is a leader and does not change its direction: θ1(s) ≡ θ1. It was proved that under
suitable conditions the direction of motion of any other particle j ≥ 2 tends to the direction of
the leader: θj(s)→ θ1 as s→∞.

Hegselmann and Krause [7] introduced an opinion dynamics model x(s) = A(s)x(s−1) with

ajk(s) =
1 (|xk(s)− xj(s)| ≤ εj)∑N

m=1 1 (|xm(s)− xj(s)| ≤ εj)
(2)

where εj > 0 are confidence levels. So, generally speaking, the matrices A(s) are not
symmetric. It was shown in [7] that sometimes, depending on the choice of {εj} and an initial
configuration x(0), the model can exhibit an opinion fragmentation phenomenon.

Other opinion dynamics models (Abelson, Friedkin and Johnsen etc.) are out of the present
discussion because they are not so closely related to the network consensus problem as (2).

2. Clock synchronization problem for WSNs
Wireless sensor networks (WSNs) are typical examples of distributed networks. The sensor nodes
N = {1, . . . , N} communicate via radio waves. Their interconnection matrices are naturally
determined by range and power characteristics of the radio communication (see [16]).
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From now and onwards, the possibility of direct communications between pairs of nodes will
be described by an N × N stochastic matrix W = (wjk)j,k∈N . Elements of N will be called
client nodes. There is also a stand-alone time server formally not belonging to the network but
being reffered in the sequel as the node 0. The system is observed at discrete times. Any client
node j ∈ N is equipped with an unperfect clock which current value is τj ∈ R. The time server
(the node 0) has a perfect clock providing exact time τ0 ∈ R. Let v > 0 be the rate of the clocks
with respect to t. Being isolated these clocks evolve as

τ0(t) = τ0(t− 1) + v, τ◦j (t) = τ◦j (t− 1) + v + δj(t), j ∈ N , (3)

where t ∈ T := {1, 2, . . .} and δ(t) = (δj(t), j ∈ N ) ∈ RN are i.i.d. random vectors representing
random noise related to unperfect clocks of client nodes. We assume that E δj(t) = 0.

The evolutions (3) are discrete time versions of the clock models used in [17–20]. Since rates
of clients are equal to the server rate v the above system of clocks is drift-free [21].

To perform a common task the WSN needs a common time. However, the client clocks τ◦j (t)
are desynchronized for two reasons: 1) the presense of random noise δ(t) 6= 0; 2) initial values
τ◦j (0), j ∈ N , are different and unknown. The second reason is present even in the deterministic
model (δ(t) = 0). A natural idea is to run the following agreement algorithm: for any j ∈ N

τj(t) = τj(t− 1) + v + δj(t) +
∑
k 6=j

wjk (τk(t− 1)− τj(t− 1)) . (4)

The sum in (4) is in fact taken over k ∈ Oj = {k : wjk > 0} and so (4) is a distributed algorithm.
The last summand in (4) is a correction made by the node j by using information on local time
values τk(t− 1) obtained from the neighbourhood Oj . Equally, one can say that the sum in (4)
introduces a special interaction between client clocks. Since wjj = 1 −

∑
k 6=j wjk the matrix

form of (4) is τ (t) = Wτ (t− 1) + v1 + δ(t) where τ and δ are column vectors of length N .
To eliminate the influence of a constant drift we introduce a new vector τ ′(t) = τ (t) − vt1.

The iterative scheme (4) turns into τ ′(t) = Wτ ′(t − 1) + δ(t) which is a stochastic version of
the network consensus (NC) algorithm. Consider first the deterministic case δ(t) = 0. If the
matrix W satisfies any known conditions ( [1,6]) sufficient for reaching concensus then τ ′(t)→ c1
as t→∞. This means that the algorithm (4) provides an internal synchronization of the clients
clocks, i.e., τj0(t)− τk0(t)→ 0 for any nodes j0 and k0. For the stochastic model with δ(t) 6= 0
the local times τj(t) are random variables. So the best we can expect is that under suitable
conditions (see [12, 13]) the differences τj0(t) − τk0(t) converge in distribution to some limit
probability laws. Nevertheless, the algorithm (4) keeps the client clocks far from the accurate
time of the time server 0 and does not provide a global synchronization. To see this consider
deviations xj = τj − τ0. The vector x(t) = (x1(t), . . . , xN (t)) evolves as x(t) = Wx(t− 1) + δ(t)
so all above arguments are applicable. For example, in the deterministic case δ = 0 under
suitable assumptions one has τj(t)− τ0(t)→ c01 as t→∞ but c0 6= 0 depends on initial values
τ (0) of the clients clocks which are unknown. More details can be found in [22].

3. Interaction with the time server
To synchronize client clocks τj(t) with the accurate time τ0(t) we modify the model (4) by adding
the time server (TS) to the system. The time server 0 can send messages to some (but not to all)
client nodes. A message m0→j′ sent on some step t = t′ from 0 to j′ contains the value τ0(t′).
The message m0→j′ instantly reaches the destination node j′ which immediately adjusts its clock
to the value recorded in m0→j′ : τj′(t

′) = τ0(t′). This is the usual message passing mechanism
with zero delays. If on step t there is no message from 0 to j then the clock value τj(t) is adjusted
according to the jth row of (4). A node just received a message from the time server is aware
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that its newly adjusted clock value is more precious than ones of its neigbours. If on step t1 a
client clock τj1 was set to the value τ0(t1) then during the time interval t1 + 1, . . . , t1 + ∆j1 the

node j1 decides to ignore opinions of its neighbours. Let T 0,j =
{
t
(j)
n

}
n∈N

denote the sequence

of steps t when j receives messages from 0. Hence to define the modified model one needs to
specify T :=(T 0,j , j ∈ N ) and ∆ :=(∆j , j ∈ N ). Now the variables xj = τj − τ0 evolve as in (1)
where W (s) = W (s;T,∆) is some N × N -matrix with entries wjk(s) ∈ {0, wjk, 1} uniquely
determined by the above algorithm. Notation D(s) = D(s;T ) stands for the diagonal matrix
of 0s and 1s, D(s) := diag(I{s/∈T 0,j}, j ∈ N ), indicating that random noise terms δj(s) are not

added to τj(s) on steps s = t
(j)
n .

Define R(s) :=
{
j | T 0,j 3 s

}
⊂ N , the subset of client nodes receiving messages from

the time server on the step s. From the viewpoint of the node 0 the set R defines a
prescribed sequence of recipients R(s) to whom it should consequently send messages. We
assume henceforth that the scheduling sequence R is not empty and periodic with period d, i.e.,
R(s + d) = R(s), s ∈ T. It is easy to see that {D(s)}s∈T and {W (s)}s≥s0 are d-periodic too
where s0 = s0(R,∆) is sufficiently large.

It is convenient to consider separately two variants of the above defined model: TS+DN
(deterministic model with δ(t) = 0) and TS+SN (stochastic model with δ(t) 6= 0). It is readily
seen that the mean m(s) = Ex(s) of the TS+SN behaves as the state x(s) of the TS+DN.

An asymptotic behavior of the both TS+DN and TS+SN models was studied in [22]. Under
some additional conditions on W and δ(t) we have the following results as s→∞.

1) In TS+DN model all clients synchronize with the time server, i.e., xj(s) = τj(s)−τ0(s)→ 0.
2) Varx(s), the covariance matrix of synchronization errors of the TS+SN, is bounded in s.
3) Any subsequence {x(nd+ i)}n∈N has a limit in distribution as n→∞.

The first item is similar to results on the NC problem in the presence of leaders [2,23]. Additional
sufficient conditions assumed in [22] for proving 1–3 are easy to verify. We omit details.

4. Performance of the modified algorithm and network design problem
4.1. Spectral radius. Let U(s) be the set of clients which are receiving messages from the server
node 0 on the step s or are ignoring opinions of neighbors on the step s. As it follows from [22]
the rate of convergence of the modified algorithms depends of the spectral radius ρ of the matrix

Π =
◦
W (s0 + d − 1)

◦
W (md + i − 1) · · ·

◦
W (s0) where

◦
W (s)= Z(s)W and Z(s) = diag(I{j /∈U(s)}).

Note that ρ = ρ(W,R). It is clear that Π is substochastic and 0 ≤ ρ < 1. Below we describe
some important cases when effective evaluation of ρ is possible.

4.2. Boundary and internal nodes. Denote by B =
{
j : T 0,j 6= ∅

}
the set of nodes receiving

messages from the time server node 0. Evidently, B =
⋃
s
U(s). Nodes of B will be called

a boundary and the set of nodes I = N\B will be called an internal network. The most
interesting situation is that where the set B is only a small part the whole distributed network.
For WSNs it means that the internal network is large but the time server communicates only
with relatively small number of boundary nodes. Let the nodes of N be renumbered in such a
way that B = {1, 2, . . . , k} and I = {k + 1, . . . , k + n}. Thus N = k + n.

4.3. Design of the network. Assume that the internal network I = {k + 1, . . . , k + n} and its

interconnection (stochastic) matrix W (I) = (qj1,j2)k+n
j1,j2=k+1 are given. The task is to organize

communication of I with the time server. For WSNs it is easy imagine situations when the direct
radio connection between 0 and I is not possible due to natural obstacles (hills, walls etc.). An
opinion dynamics interpretation of this task may be the following one. The opinion leader
(node 0) and the client nodes speak different languages. It is necessary to add “translators” B
to organize transmission of information from the node 0 to client nodes I.
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To build an accurate time synchronization algorithm the network designer needs
• to introduce a set of “boundary” nodes B = {1, 2, . . . , k},
• to fix some periodic scheduling sequence R = {R(s), s ∈ T},
• to choose topology of connection links between I and B.

The choice of topology here is the choice of W = (wi1,i2)k+n
i1,i2=1 ∈ M

st

k+n subject to the

condition wj1,j2 = r qj1,j2 , j1, j2 = k + 1, . . . , k + n, where r ∈ (0, 1) is some coefficient.

4.4. A special class of synchronization algorithms. We say that a matrix W ∈ Mk+n belongs
to the class HCRSk,n if
1) wi1j = wi2j ∀i1, i2 ∈ {k + 1, . . . , k + n} , j ∈ {1, . . . , k} .
2)
∑k+n

j=k+1wij = const ∀i ∈ {k + 1, . . . , k + n} .
In terms of the WSNs the item 1 means that all communications in the direction B → I
(transmission of clock values information from nodes of the boundary set to nodes of the internal
network) pass through a common gate. Note that there is no restriction on communications in
direction I → B and communications between nodes of B are also arbitrary. The item 2 evidently
holds for the network designs discussed above. For opinion dynamics models the item 1 means
that while different nodes of B may have different information on opinion of the leader node 0,
any boundary node distributes such information between nodes of I uniformly.

Lemma 1. The class HCRSk,n is closed with respect to multiplication.

Definition 1. We write W ∈ SD(B, I,W (I)) and call W a specially designed matrix if W is
designed with B, I and W (I) as specified above and W ∈ HCRSk,n.

Lemma 2. If W ∈ SD(B, I,W (I)) then any
◦
W (s) = Z(s)W ∈ HCRSk,n.

Definition 2. Given A ∈Mk+n define B(A) = (bij)
k+1
i,j=1 ∈Mk+1 as follows

bij = aij , (i, j) ∈ {1, . . . , k + 1} × {1, . . . , k},
bi,k+1 =

∑k+n
m=k+1 aim, i ∈ {1, . . . , k + 1} .

Lemma 3. If A(1), . . . , A(m) ∈ HCRSk,n then B(A(1)···A(m)) = B(A(1)) · · ·B(A(m)).

4.5. Spectral problem in the case of specially designed W . Let W ∈ SD(B, I,W (I)). Then
from Lemmas 1 and 2 we see that Π ∈ HCRSk,n. Consider the (k + 1) × (k + 1) matrix B(Π).

By Lemma 3 B(Π) = B

( ◦
W (s0+d−1)

)
B

( ◦
W (s0+d−2)

)
· · ·B

( ◦
W (s0)

)
. Hence while Π is a large-size

matrix, B(Π) can be obtained as a product of small-size matrices.
Denote by ΛB and ΛQ complete lists of eigenvalues of B(Π) and W (I), respectively, including

all repeated eigenvalues. Clearly, |ΛB| = k + 1. Let Λ′Q be obtained from ΛQ by excluding

only one element 1. Denote by
(

Λ′Q

)d
the list of d-powers of elements of Λ′Q. Note that∣∣∣Λ′Q∣∣∣ =

∣∣∣(Λ′Q)d
∣∣∣ = n− 1.

Theorem 1. The complete list of eigenvalues of the matrix Π is ΛB
⋃(

rΛ′Q

)d
.

This theorem is useful when some information on the spectrum of W (I) is a priori known
and B is relatively small. Proofs of the above statements are purely algebraic and are omitted.

5. Conclusions
We have analytically studied new algorithms for synchronization of local clocks in nodes of
distributed networks. The proposed algorithms can also be applied to studying social networks
dynamics in the presence of opinion leaders. We show that they fit to the general scheme (1)
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of distributed iterative algorithms with time-dependent topologies and a time-nonhomogeneous
random noise. However, structures of matrices W (s) and D(s) in our algorithms are quite
original. Our approach is to combine agreement algorithms with the message passing mechanism.
The latter is widely used in various synchronization models [24–27]. We have discussed some
network design problem naturally issued from our approach. We have described a class of
algorithms that admit an evaluation of their spectrum, and, hence, a quantitative estimation of
their performance.

References
[1] Olshevsky A and Tsitsiklis J N 2011 Convergence speed in distributed consensus and averaging SIAM Review

53(4) 747–772
[2] Jadbabaie A, Lin J and Morse A S 2003 Coordination of groups of mobile autonomous agents using nearest

neighbor rules IEEE Transactions on automatic control 48(6) 988–1001
[3] Ren W and Beard R W 2008 Distributed consensus in multi-vehicle cooperative control (Springer)
[4] Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I, Czirók A and Vicsek T 1994 Generic modelling of
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