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Abstract. The results of RF optimizations for 324 MHz SC cross-bar H-mode (CH) cavity for 
0.21 beta are presented. Maximum surface electric field of 36 MV/m and a corresponding 
effective accelerating gradient of 7 MV/m have been achieved. 

1.  Introduction 
Currently planned project of the new linac injector for Nuclotron-NICA (Figure 1) demand high-
gradient SC cavities for medium energy range [1]. The most types of superconducting cavities 
developed for 𝛽 ≤ 0.5 have less than 4 cells. But in many cases the RF linac efficiency can be 
increased significantly by the use of multicell cavities. The possibility of using the five-gap 
accelerating CH resonator is considered in this paper. 

 

 
 

Figure 1. Schematic layout of the new linac injector for the Nuclotron-NICA. 
 

2.  Time transition factor optimization. 
Optimization of the TTF increases efficiency of acceleration in given structure. The TTF analysis of 
two-gap cavity proposed in [2] shows that only one value of period length d (for defined accelerating 
gap width g) corresponds to maximum TTF value.  Similar analytical approach was applied to find 
d(g) dependence that leads to maximum TTF value. The obtained dependence can be sufficiently 
described by second-order polynomial. It is presented on Figure 2.  

β=0.21c 
f=324 MHz  

 

QWR β=0.12c 
f=162 MHz  

 

QWR β=0.12c 
f=162 MHz  

 

 β=0.314c 
f=324 MHz  
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Figure 2. Оptimal period length d (blue) and corresponding TTF (red) vs. gap length g. Green line 

limits g < d set of values, which has no physical meaning.  
 

3.  Single period model optimization. 
Once TTF was optimized the next step was to develop single period geometry to minimize peak 
surface electric and magnetic fields ratios (EP/EACC and BP/EACC). Firstly, drift tubes geometry was 
optimized as the maximums of electric field were concentrated on it. Figure 3 and Figure 4 show the 
main geometrical parameters that were used for optimization.  

 

 
Figure 3. Schematical layout of a drift tube geometry. 

 

 
Figure 4. Schematical layout of a two-gap periodic model. 

 
Three major types of drift tube geometries were investigated (Figure 5). As it may be seen from 

Figure 6 decreasing lDRIFT/b ratio allows to lower relative peak electric field EP/EACC down to 7. 

d =	-0,0066g2 +	0,1488g	+	95,754
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Geometry that corresponds to lDRIFT/b = 1 (i. e. with no “door knops”) was considered to be the most 
effective. 

 

 
 

Figure 5. Three major types of drift tube geometries (k = around/tdrift): k > 1 (left), k = 1 (middle), k < 
1 (rigth). 

 

 
Figure 6. Relative surface peak field vs. b/LDRIFT ratio. 

 

4.  Full cavity model tuning 
The main challenge of finite structure optimization is the end-cells geometry design. As was proposed 
in [3] inclined geometry of the end bars helps to tune end-cells to work frequency. Figure 7 shows end 
cells design concept proposed in [3] with its main parameters used for tuning. Surface electric and 
magnetic field distributions of the CH cavity are presented on Figure 8. The parameters of tuned 
cavity are shown in Table 1.   
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Figure 7. Schematic layout of the end-cell geometry. 

 
 

 
Figure 8. Surface electric (top) and magnetic (bottom) fields in CH resonator. 
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Table 1. The geometry and RF parameters of tuned CH cavity. 
 

 
 
 
 
 
 
 
 
 

 

5.  Conclusion 
We presented the RF design of the superconducting CH cavity intended for the proposed proton and 
deuteron injector for the NICA project. The electromagnetic optimization was performed to show that 
desired effective accelerating gradient of 7 MV/m can been achieved with this type of cavity. 
This project is supported in part by the MEPhI 5/100 Program of the Russian Academic Excellence 
Project. 
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β 0.21 
Frequency [MHz] 324 

Length [mm] 500 
Radius [mm] 204 

Ep/Ea 5.1 
Bp/Ea [mT/(MV/m)] 7.5 

G [Ω] 84 

Ra/Q0 615 


