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Pseudospectral method for the quantum state
determination of the superconductor in the nonuniform
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National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute),
Kashirskoe sh., 31, 115409 Moscow, Russia

E-mail: Dmserkor@yandex.ru, PFKartsev@mephi.ru

Abstract. In this work, we present the numerical approach to determine the quantum state of a
superconductor using the Ginzburg-Landau equations by means of a pseudospectral method. Its
convergence is demonstrated by simulation of a test problem. All the analytics is given with details.

1. Introduction
A standard approach to find the quantum state of a superconductor placed in a nonuniform magnetic
field, is to apply the Ginzburg-Landau (GL) equations which can be solved numerically [1, 2, 3, 4]. In a
dimensionless form, GL equations are written as [1]:

(

i
κ

∇∇∇+A
)2

Ψ−Ψ+ |Ψ|2Ψ = 0, (1)

∇∇∇× (∇∇∇×A)+
i

2κ
(Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗)+ |Ψ|2A = 000, (2)

whereΨ is the wave function of the Cooper pair condensate,A is the vector potential of magnetic field
inside the superconductor, andκ is the dimensionless Ginzburg-Landau parameter.

The system of equations (1) and (2) is complemented by the gauge for vector potential (we choose
the Coulomb gauge):

∇∇∇ ·A = 0, (3)

and boundary conditions:
(

i
κ

∇∇∇+A
)

Ψ ·n= 0, (4)

(∇∇∇×A)τ = (H)τ , (5)

whereH is the external magnetic field on the boundary,n is a normal vector to the surface, andτ denotes
a component tangential to the surface.

The case of nonuniform external field is the most interesting from the practical point of view
but makes the computation very labor-intensive. More effective way should involve representing the
approximate solution in the form appropriate to simplify the mathematical formulation of the problem.
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Figure 1. Geometry of the problem under consideration.

In this report, we present the numerical approach to solve the GL equations using a pseudospectral
method.

We analyze the case of highly-nonuniform external field present in the localized area of
superconductor, so that far enough from the source, its influence on the superconducting state is
negligible. As a model problem, we consider a superconducting film in the field of periodic array of
magnetic particles placed in alternating way, as shown in figure 1. Alternation is needed to guarantee
that no macroscopic current is flowing through the system. As a result, the external magnetic field and
the state of the film are made periodic.

With periodic boundary conditions applied, the solution is represented by the series of plane waves:

Ψ(x,y,z) = ∑
kx,ky

ψkx ,ky(z)e
i(kxx+kyy) ≡ ∑

k

ψkeik·r, (6)

A(x,y,z) = ∑
kx,ky

akx,ky(z)e
i(kxx+kyy) ≡∑

k

akeik·r, (7)

wherer = {x,y}, kα = 2π
Lα

lα , α = x,y, andlα = lmin, . . . , lmax. The range of the summation is limited by
practical considerations.

Such form of the solution allows us to convert the 3D(x,y,z) problem into 1D(z) and take advantage
of Fourier transform.

2. Main theory
Substituting equations (6) and (7) into initial system (1)–(5) and collecting similar terms, we get for the
wave function:

−
1
κ

2

(

d2ψk

dz2 −k
2ψk

)

−ψk+

+
2i
κ

∑
p

(

(

a(x)p (kx − px)+a(y)p (ky − py)
)

iψk−p+a(z)p

dψk−p

dz

)

+

+∑
p,q

(

(ap ·aq)ψk−p−q+ψpψ∗
qψk−p+q

)

= 0, (8)

for three components of vector potential:

k
2a(x)

k
−

d2a(x)k

dz2 −
1

2κ ∑
p

(kx +2px)ψ∗
pψk+p+∑

p,q

a(x)p ψqψ∗
p+q−k = 0, (9)
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k
2a(y)

k
−

d2a(y)k

dz2 −
1

2κ ∑
p

(ky +2py)ψ∗
pψk+p+∑

p,q

a(y)p ψqψ∗
p+q−k = 0, (10)

k
2a(z)

k
−

d2a(z)
k

dz2 +
i

2κ ∑
p

(

ψ∗
p

dψk+p

dz
−ψk+p

dψ∗
p

dz

)

+∑
p,q

a(z)p ψqψ∗
p+q−k = 0, (11)

for boundary conditions:

(

i
κ

{

ikxψk, ikyψk,
dψk

dz

}

+∑
p

apψk−p

)

·n= 0, (12)

{

ikya(z)
k

−
da(y)

k

dz
,
da(x)

k

dz
− ikxa(z)

k
, ikxa(y)

k
− ikya(x)

k

}

τ

= (hk)τ , (13)

and for the gauge:

ikxa(x)
k

+ ikya(y)
k

+
da(z)

k

dz
= 0. (14)

Note multiple summations in the nonlinear terms of equations (8)–(12). Direct numerical calculation
of these sums is very time-consuming. More effective way is based on the Convolution Theorem [5]
allowing to calculate the discrete convolution using two successive Fourier transforms:

( f ∗g)k = ∑
p

fpgk−p =
1
V ∑

r

e−ik·rFrGr, (15a)

( f ∗g∗h)k =
1
V ∑

r

e−ik·rFrGrHr. (15b)

HereFr is the Fourier transform offk calculated in thek-range extended by factor of 2 (the factor
depends on the number of functions in the convolution), with function valuesfk outside initial range
Kmin ≤ kα ≤ Kmax manually set to zero (this is the so-called ‘zero-padding’ known in digital signal
processing [5]).

Applying (15a) and (15b) to nonlinear terms in equations (8)–(11), we obtain:

∑
p

(

(

a(x)p (kx − px)+a(y)p (ky − py)
)

iψk−p+a(z)p

dψk−p

dz

)

=

=
1
V ∑

r

(

(

kxa(x)r + kya(y)r −
(

pxa(x)
)

r
−
(

pya(y)
)

r

)

iψr+a(z)r

(

dψ
dz

)

r

)

e−ik·r, (16)

∑
p,q

(

(ap ·aq)ψk−p−q+ψpψ∗
qψk−p+q

)

=
1
V ∑

r

(

a
2
r+ |ψr|

2)ψre−ik·r, (17)

∑
p

(kx +2px)ψ∗
pψk+p =

1
V ∑

r

(

kx|ψr|
2+2(pxψ∗)r ψr

)

e−ik·r, (18)

∑
p

(ky +2py)ψ∗
pψk+p =

1
V ∑

r

(

ky|ψr|
2+2(pyψ∗)

r
ψr

)

e−ik·r, (19)

∑
p,q

a(x)p ψqψ∗
p+q−k =

1
V ∑

r

a(x)r |ψr|
2e−ik·r, (20)
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∑
p,q

a(y)p ψqψ∗
p+q−k =

1
V ∑

r

a(y)r |ψr|
2e−ik·r, (21)

∑
p,q

a(z)p ψqψ∗
p+q−k =

1
V ∑

r

a(z)r |ψr|
2e−ik·r, (22)

∑
p

(

ψ∗
p

dψk+p

dz
−ψk+p

dψ∗
p

dz

)

=
1
V ∑

r

(

ψ∗
r

(

dψ
dz

)

r

−ψr

(

dψ∗

dz

)

r

)

e−ik·r. (23)

Finally, we have the system of equations for Fourier-transformed wave functionψk(z) and vector
potential ak(z), consisting of algebraic expressions for these components, and additional Fourier
transforms in extendedk-range with appropriate zero-padding.

3. Test realization
For the problem shown in figure 1, the boundary conditions (12) and (13) are written as:

i
κ

dψk

dz
+∑

p

a(z)p ψk−p = 0, (24)

da(x)k

dz
= ikxa(z)k +h(y)k , (25)

da(y)
k

dz
= ikya(z)

k
−h(x)

k
. (26)

In our realization, the GL equations and boundary conditions are approximated by first-order finite
differences. On the first boundary (z = 0), the corresponding equations are the following:

i
κ

[ψk]
u
1− [ψk]

u
0

∆z
+∑

p

[

a(z)p

]u

0

[

ψk−p

]u
0 = 0, (27)

[

a(x)
k

]u

1
−
[

a(x)
k

]u

0

∆z
= ikx

[

a(z)
k

]u

0
+
[

h(y)
k

]u

0
, (28)

[

a(y)k

]u

1
−
[

a(y)k

]u

0

∆z
= iky

[

a(z)k

]u

0
−
[

h(x)k

]u

0
, (29)

ikx

[

a(x)
k

]u

0
+ iky

[

a(y)
k

]u

0
+

[

a(z)k

]u

1
−
[

a(z)k

]u

0

∆z
= 0, (30)

while on the second boundary (z = zd):

i
κ

[ψk]
u
d − [ψk]

u
d−1

∆z
+∑

p

[

a(z)p

]u

d

[

ψk−p

]u
d = 0, (31)

[

a(x)
k

]u

d
−
[

a(x)
k

]u

d−1

∆z
= ikx

[

a(z)
k

]u

d
+
[

h(y)
k

]u

d
, (32)

[

a(y)
k

]u

d
−
[

a(y)
k

]u

d−1

∆z
= iky

[

a(z)k

]u

d
−
[

h(x)k

]u

d
, (33)
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ikx

[

a(x)k

]u

d
+ iky

[

a(y)k

]u

d
+

[

a(z)k

]u

d
−
[

a(z)k

]u

d−1

∆z
= 0, (34)

where[· · · ]uv denote the values ofψk andak at the nodes of the calculation mesh with coordinates(u,v)
of time andz-axis, respectively.

We see that the equations for the vector potential components are independent of the wave function
and linear, thus they can be solved analytically. The values of the wave function, in their turn, can be
calculated using the procedure similar to calculation of nonlinear terms of GL equations. It should be
noted that the order of approximation can be increased using the method of fictitious areas.

Our realization is based on the pseudoviscosity method [1]. Time steps are made with explicit
Euler method, the space is discretized with uniform mesh with step∆z. To test the stability and
convergence of the suggested approach, we simulated the system with the external fieldH = 000 starting
from the arbitrary chosen state[ψk]

0
v = 0.25, [ak]

0
v = 000. The exact solution of GL equations in this

case isΨexact(x,y,z) = 1, Aexact(x,y,z) = 000. Other parameters of the problem are:κ = 0.2 (type-I
superconductor),Lx = Ly = Lz = 1.6.

The convergence to the exact solution is demonstrated in figure 2: during the simulation, the free
energy approaches the exact valueFexact=−LxLyLz/2.

0 1 2 3 4 5

Simulation steps, 106

-2.4

-2

-1.6

-1.2

-0.8

-0.4

0

F
re

e
 e

n
e

rg
y
, 

A
.u

.

F(t)

simulation

exact value

Figure 2. Test of stability and convergence of the suggested approach using the pseudoviscosity method.
Parameters of the calculation are∆t = 10−6, ∆z = 0.1, lmin = 0, lmax = 1. It can be seen that the free
energy of the film approaches exact valueFexact=−2.048 during the calculation.

4. Conclusion
In this article, we presented the approach for numerical determination of quantum state of superconductor
using the pseudospectral method to solve the Ginzburg-Landau equations. Due to reduction of the
problem dimensionality and application of efficient numerical algorithms, this method can sufficiently
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reduce the amount of calculations needed, and can speed-up theprocess of solution. All the relations
needed for realization are shown. The suggested approach was applied to the problem with known exact
solution, to demonstrate the stability and convergence of the algorithm.
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