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Abstract. We study the conductance fluctuations in the crossover between the ballistic
and diffusive regimes of phase coherent transport. For a quasi-1D disordered system, the
correlation function of the conductance at different frequencies is calculated beyond the
diffusion approximation. The result obtained establishes the interrelation between conductance
fluctuations in the crossover regime and the characteristics of the disordered system. The
frequency dependence of different contributions to the correlation function is analyzed at
subdiffusion length scales.

1. Introduction
Previous studies of mesoscopic conductance fluctuations (see, e.g., Refs. [1–11]) were mostly
focused on the diffusive regime of wave transport where length L of the sample is much
larger than transport mean free path ltr. In this regime, the effect of ”universal” conductance
fluctuations (UCF) is observed [1,4]. The variance of the dimensionless conductance appears to
be of the order of unity and, to a large extent, does not depend on the size of the sample. Not
much is known as regards the crossover from ballistic to diffusive regime and, correspondingly,
the fluctuations at subdiffusion length scales, L ≤ ltr. The currently available results concerned
with the crossover regime are based mostly on direct numerical modelling [12–15]. Analytical
results within the random matrix theory (RMT) approach [4, 16–18] were obtained only for
waves identical in frequency.

In this paper we present a result of diagrammatic calculations for the conductance correlation
function of a quasi-1D system (a waveguide with bulk disorder). The correlation function is
expressed explicitly in terms of the cross-section of scattering by inhomogeneities of the medium
and the propagators that obey the standard transport equation. In the large-length limit, our
result transforms with no divergencies to the well-known diffusion formula [6, 8]. The crossover
between the quasi-ballistic and diffusive regimes is studied for a system of point-like centers.
Our calculations within the two-stream version of the discrete-ordinate method generalize the
well-known RMT formula for the conductance variance [16–18] to the case of waves different in
frequency.

2. Results of diagrammatic calculations
We consider transmission of classical waves through a disordered waveguide of length L. The
dimensionless conductance (or transmittance) of the waveguide can be defined as the sum of

http://creativecommons.org/licenses/by/3.0
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transmission coefficients Tab connecting incoming and outgoing modes a and b, respectively (see,
e.g., Refs. [4–6])

G =
∑
a,b

Tab. (1)

The transmission coefficients Tab depend on spatial configuration of the scattering centers
and vary from sample to sample. Under conditions of weak localization (G ≫ 1), the value
of ⟨G⟩ averaged over an ensemble of disordered samples is governed, within the standard
impurity technique, by the sum of ladder diagrams. The correlation function of conductance
fluctuations at different frequencies C(∆ω) = ⟨δG(ω0 + ∆ω/2)δG(ω0 − ∆ω/2)⟩ (∆ω is the
shift of incident waves in frequency, ω0 is the carrying frequency) can be expressed in terms of
the ensemble-average fourth moment of a wave field and represented as expansion in orders of
interference between ladders. Each interference event between the ladders contains the Hikami
vertex [19]. The correlation function is governed by diagrams containing two vertices (see Fig.1).
In the presence of time-reversal symmetry, the diagrams shown explicitly in Fig.1 should be
supplemented by those that are obtained by interchanging initial and final states in one pair
of conjugated wave fields. These diagrams contain the maximally crossed internal graphs (or
cooperons) instead of the ladders.
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Figure 1. Diagrams contributing to the conductance correlation function. The paired lines
correspond to ladder graphs. The shaded boxes are the Hikami vertex [19].

For great number N of propagating modes (N = k20A/4π, k0 is the wavenumber, A is the
area of the waveguide cross-section) the summation over modes can be replaced by integration
over directions Ω of wave propagation (see, e.g., Ref. [6]),

∑
a

... =

∫
Adqa

(2π)2
... =

k20A

(2π)2

∫
dΩa|µa|... , (2)

where qa is the transverse momentum (qa < k0), µa = Ωaz, the z-axis is directed along the
waveguide. Hemispheres Ωaz > 0 and Ωaz < 0 correspond to the waves that propagate in the
forward and backward directions, respectively. The average conductance is expressed in terms
of the average intensity,

⟨G⟩ = N

π

∫
dΩadΩb|µa||µb|Iab(zf = L|zi = 0), (3)

where propagator Iab(z|z′) = I(z,Ωa|z′,Ωb) denotes the intensity at depth z in direction Ωa

from a source placed at depth z′ and emitting waves in direction Ωb. Intensity Iab(z|z′) is subject
to the transport equation [20](

µa
∂

∂z
+ nσtot

)
Iab(z|z′) = δ(z − z′)δ(Ωa −Ωb) +

∫
dΩcσacIcb(z|z′), (4)
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where σac = ndσ(ΩaΩc)/dΩ, n is the number of scattering centres per unit volume, dσ/dΩ is
the differential scattering cross-section, σtot = σ + σa is the total cross-section of interaction, σ
and σa are the cross-sections of elastic scattering and absorption, respectively.

The diagrams shown in Fig.1 can be evaluated by a straightforward manner (see, e.g., Refs.
[21, 22]). In what follows, we take into account the ladders incorporating an arbitrary number
of scattering events, among them the graphs without any scattering. These latter describe
nonscattered waves. Contrary to calculations, performed within the diffusion approximation
[6,8], we need not introduce particular diagrams containing only one internal ladder propagator
and the six-point Hikami vertex. Such diagrams are already contained among the diagrams
depicted in Fig.1. They correspond to the pair of nonscattered waves in either of two internal
ladders.

Our diagrammatic calculations are similar to those of Ref. [22] where the conductance variance
was found. Extending results [22] to the case of the waves differing in frequency, we derive the
following expression for the correlation function:

C(∆ω) = CA(∆ω) + CB(∆ω) + CC(∆ω), (5)

CA(∆ω) =

∫ L

0
dz dz′

∫
dΩadΩbdΩcdΩd σabσcd× (6)[

(Ifa−Ifb )
2 Iac(∆ω)Ibd(−∆ω) (Iic−Iid)

2+(Ifa−Ifb )(I
i
−a−Ii−b) Iac(∆ω)Ibd(−∆ω) (If−c−If−d)(I

i
c−Iid)

]
CB(∆ω) =

∫ L

0
dz dz′

∫
dΩadΩbdΩcdΩd σabσcd

[
(Ifa − Ifb )I

i
b + If−b(I

i
−a − Ii−b)

]
× (7)

Re {(Iac(∆ω)− Iad(∆ω))(I−a−c(∆ω)− I−b−c(∆ω))}
[
(Ifc − Ifd )I

i
d + If−d(I

i
−c − Ii−d)

]
CC(∆ω) =

∫ L

0
dz

∫
dΩadΩb σab

[
(Ifa − Ifb )I

i
b + If−b(I

i
−a − Ii−b)

]2
Re {Iab(z|z,∆ω)} (8)

where internal propagator Iab(∆ω) = Iab(z|z′,∆ω) obeys the transport equation that is obtained
from Eq.(4) by substitution of complex absorption coefficient (nσa + i∆ω/c) for nσa (c is the
velocity of waves). The incoming and outgoing propagators are defined as:

Iia(z) =

∫
dΩb |µb| Iab(z|zi = 0,∆ω = 0), Ifa (z) =

∫
dΩb |µb| Iba(zf = L|z,∆ω = 0). (9)

The change of sign in a subscript of any propagator entering into Eq.(5) implies the reverse of
the direction (i.e. substitution of −Ωa for Ωa into the propagator). The incoming and outgoing
propagators appearing in Eq.(5) with subscripts ±a, ±b are functions of z, while those with
subscripts ±c, ±d are functions of z′.

The terms that contain products of the incoming and outgoing propagators with subscripts

of opposite sign (e.g., [(Ifa −Ifb )I
i
b][ . . . ][I

f
−d(I

i
−c−Ii−d)]) correspond to the cooperon contribution

which includes the maximally crossed internal graphs and, in the low-order scattering limit, the
graphs that describe the waves propagating in opposite directions. Equations (6)-(8) has the
presented form provided that the time-reversal symmetry is not violated.

Note that the third term in Eq.(5), CC(∆ω), corresponds to the contribution which, within
the diffusion approach [6, 8], is given by the six-point Hikami vertex.

Equation (5) generalizes the result of the diffusion approximation [6,8], much as the transport
equation generalizes the equation of diffusion. Equation (5) establishes the interrelation between
the conductance fluctuations and the characteristics of scattering centers of the disordered
system, and enables us to study evolution of the fluctuations in going from the quasi-ballistic
propagation to the diffusive regime.
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Figure 2. Different contributions
to C(∆ω = 0, sL) as functions
of the waveguide length. The
upper curve is the sum of all
contributions.

3. Crossover between the quasi-ballistic and diffusive regimes
As an illustration of application of Eq.(5) to calculating the correlation function of conductance
fluctuations beyond the diffusion approximation, we take advantage of the two-stream version
of the discrete-ordinate method [20]. This simplest model enables us to perform integration in
Eq.(5) explicitly and to derive analytical results for C(∆ω) which describe the crossover between
the quasi-ballistic and diffusive regimes.

Within this approach, each integral over Ω is supposed to be equal to the sum of the values
of an integrand quantity at Ωz = ±µ0,∫

dΩaI(z,Ωa) = 2πI+(z) + 2πI−(z), (10)

where I±(z) = I(z,Ωz = ±µ0), and ±µ0 are the discrete ordinates [20].
For a widely used model of pointlike centers, quantity σab in Eqs. (4) and (5) is independent

of the directions, and the disorder is characterized only by mean free path l, σab = (4πl)−1 (the
medium with no absorption is considered, σa = 0). In this case, the C-functions entering into
Eq.(5) are expressed in terms of the values of intensity propagators at ±µ0 as follows

CA(∆ω) = 2

(
π

l

)2

Re

∫ L

0
dz dz′[I++(∆ω)I−−(−∆ω) + I+−(∆ω)I−+(−∆ω)]× (11)

[(If+ − If−)
2(Ii+ − Ii−)

′2 + (If+ − If−)(I
i
+ − Ii−)(I

f
+ − If−)

′(Ii+ − Ii−)
′]

CB(∆ω) =

(
π

l

)2

Re

∫ L

0
dz dz′[h+(I++(∆ω)− I+−(∆ω)) + h−(I−−(∆ω)− I−+(∆ω))]× (12)

[h′+(I−−(∆ω)− I+−(∆ω)) + h′−(I++(∆ω)− I−+(∆ω))]

CC(∆ω) =
π

l
Re

∫ L

0
dz[h2+I+−(z|z,∆ω) + h2−I−+(z|z,∆ω)], (13)

where h± = [ ± (If+ − If−)I
i
∓ ∓ (Ii+ − Ii−)I

f
±]. The propagators I±±(∆ω) = I±±(z|z′,∆ω)

and Ii,f± = Ii,f± (z) entering into Eqs. (11)-(13) are determined analytically from the transport
equation and given by

I++(z|z′,∆ω) =
1

2πµ0 sinh(γ) sinh(ξL + γ)

{
sinh(ξ) sinh(ξL − ξ′), z < z′

sinh(ξ′ + γ) sinh(ξL − ξ + γ), z > z′,
(14)

I−+(z|z′,∆ω) =
1

2πµ0 sinh(γ) sinh(ξL + γ)

{
sinh(ξ + γ) sinh(ξL − ξ′), z < z′

sinh(ξ′ + γ) sinh(ξL − ξ), z > z′,
(15)
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Figure 3. Frequency dependence of the different contributions to the correlation function for
various waveguide lengths. (a) sL = 0.5, (b) sL = 1, (c) sL = 3. The upper curves correspond
to the sum of all contributions. (d) Correlation function C(∆ω), from upper to lower curves,
sL = 0.5, 1 and 3.

where ξ = s sinh(γ), ξL = sL sinh(γ) and sinh(γ) = 2
√
i∆ωl(1 + i∆ωl/c)/c, s = z/2µ0l,

sL = L/2µ0l. The propagators I±,−(z|z′,∆ω) are obtained from Eqs.(14) and (15) with the
relations I−−(z|z′,∆ω) = I++(z

′|z,∆ω), I+−(z|z′,∆ω) = I−+(L− z|L− z′,∆ω). The incoming
and outgoing propagators are equal to

Ii±(z) =
sL − s+ (1± 1)/2

sL + 1
, If±(z) =

s+ (1± 1)/2

sL + 1
. (16)

In Eqs.(11)-(13), the incoming and outgoing propagators marked by prime are functions of z′,
otherwise they are functions of z.

The length dependence of the different contributions to the correlation function at ∆ω = 0
is shown in Fig.2. Their sum is equal to

C(∆ω = 0, sL) =
2

15

(
1− 1 + 6sL

(1 + sL)6

)
, (17)

The obtained value of C(∆ω = 0, sL) (i.e., the conductance variance ⟨(δG)2⟩) coincides with the
well-known result of RMT calculations [16–18].

An analytical formula that extends Eq.(17) to a nonzero value of the frequency shift ∆ω is too
cumbersome to be presented here and, therefore, we illustrate the frequency-dependence of the
conductance correlation function in the graphical form. Evolution of the frequency dependence
both of the different contributions to the correlation function and of their sum with the waveguide
length is illustrated in Fig.3. As follows from Fig.3(d), the frequency profile of C(∆ω) becomes
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Figure 4. Correlation function
of conductance fluctuations versus
variable ∆ωls2L/c (from upper to
lower curve sL = 5, 10, 15). Crosses
are the results of the diffusion
approximation [6]. The discrete
ordinate is chosen to be equal to
µ0 = 1/

√
3.

narrower as the waveguide length increases. In the diffusive limit (L ≫ l), the correlation
function as a function of the variable ∆ωls2L/c tends to the universal law which coincides with
the corresponding result of the diffusion approximation [6, 8] (see Fig.4).

4. Conclusions
In conclusion, we have developed a theoretical approach to calculating the correlation function
of conductance fluctuations in a quasi-1D system, paying special attention to the subdiffusion
length scales. We have presented an analytical result which relates the correlation function to
the characteristics of the disordered system. The correlation function has been calculated within
the two-stream model. It has been shown that C(∆ω) becomes narrower with increasing the
waveguide length L and tends to the diffusion result [6, 8] in the large L limit. The results
obtained generalize RMT calculations [4, 16–18] to the case of a nonzero frequency shift, and
can be useful for experimental studies of the conductance correlation function [10].
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