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Abstract. We study propagation of an ultrashort pulse of polarized light through a turbid medium with
the Reynolds-McCormick phase function. Within the basic mode approach to the vector radiative transfer
equation, the temporal profile of the degree of polarization is calculated analytically with the use of the small-
angle approximation. The degree of polarization is shown to be described by the self-similar dependence on
some combination of the transport scattering coefficient, the temporal delay and the sample thickness. Our
results are in excellent agreement with the data of numerical simulations carried out previously for aqueous
suspension of polystyrene microspheres.

1. Introduction
Over past two decades, the propagation of light through highly scattering media has attracted
great attention due to its potential applications to optical tomography [1].

An ultrashort pulse of light propagating in a scattering medium experiences multiple
scattering events, resulting in broadening of its temporal profile and depolarization. Early
arrival photons of the transmitted pulse propagate along nearly straight lines. These photons
are the least depolarized. Therefore the polarization can be used for gating the early arrival
component of the transmitted pulse with the gate of the order of a polarization decay time (in
accordance with Refs. [1–3] the degree of polarization decays over the initial 100ps after the
arrival of the ballistic photons).

Depolarization of polarized pulses transmitted through a thick turbid slab was studied both
experimentally [2–5] and numerically with Monte Carlo [6] and DISORT [7] codes. The results
[2–7] pertain to turbid media composed of Mie-particles (polystyrene microspheres suspended
in water). As follows from Refs. [2–7], the transmitted light retains its initial polarization over
a small temporal interval following the arrival of the ballistic photons, ∆ = ct − z ≪ z/2 (c is
the velocity of light in the medium, z is the slab thickness). The photons arriving with delays
∆ > z are completely depolarized.

An analytical treatment of the depolarization process was carried out within the small-angle
diffusion (or Fokker-Planck) approximation [8] which holds provided that the phase function
falls off rapidly as the scattering angle increases. Such an approximation fails for many realistic
situations where the phase function decreases rather slowly.

It what follows the depolarization of an ultrashort pulse of polarized light propagating through
a turbid medium is considered. Within the basic mode approximation [9–11], we develop a
theoretical approach to calculating the temporal profile of the degree of polarization. The

http://creativecommons.org/licenses/by/3.0
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calculations are carried out within the small-angle approximation in application to the Reynolds-
McCormick phase function [12] which is frequently used for modeling the single-scattering by
Mie-particles. The degree of polarization is shown to depend only on a certain combination of
the delay ∆, the slab thickness z and the transport scattering coefficient σtr. Our results are in
excellent agreement with the data of numerical simulations [6].

2. Basic mode approximation
To calculate the temporal profile of the degree of polarization, we take advantage of the
nonstationary vector radiative transfer equation. The normal incidence of a δ-pulse of polarized
light on the surface is considered. The beam width is assumed to be greater than the beam
transverse spread in the medium. For highly forward single-scattering, we can neglect the off-
diagonal elements of the scattering matrix [9, 10]. Then, the vector radiative transfer equation
decomposes into three independent equations for the basic modes [9–11,13].

The intensity satisfies the scalar transfer equation{
1

c

∂

∂t
+Ω

∂

∂r
+ σtot

}
I (r,Ω, t) = σ

∫
dΩ′a1(ΩΩ′)I

(
r,Ω′, t

)
(1)

where σtot = σ+σa is the total extinction coefficient; σ and σa are the scattering and absorption
coefficients of the medium, respectively, the vectors Ω and Ω′ denote the directions of photon
propagation, a1(ΩΩ′) is the phase function of single-scattering. For the unit incident flux, the
boundary condition for Eq.(1) is written as

I (z = 0,Ω, t) = δ (t) δ (Ω−Ω0) (2)

where Ω0 is the internal normal to the surface. The basic modes of linear and circular
polarizations, W (r,Ω, t) and V (r,Ω, t) , are subject to the following transfer equations:{
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V (r,Ω, t) = σ

∫
dΩ′a2(ΩΩ′)V

(
r,Ω′, t

)
(4)

where a2(ΩΩ′) is the second diagonal element of the scattering matrix [10,11], the definition of
the angle χ+ is given in Refs. [10, 11], ψ = φ− φ′ is the difference between the azimuth angles
of the vectors Ω and Ω′. For polarized light, the boundary conditions to Eqs.(3) and (4) are
similar to Eq.(2).

3. Small-angle multiple scattering
The small-angle approximation is valid provided that the mean square of the multiple-scattering
angle θ at depth z and time instant t satisfies inequality ⟨θ2⟩z,t ≪ 1. According to Refs. [14,15]
⟨θ2⟩z,t ∼ ∆/z and, therefore, the early arrival component of the transmitted pulse, ∆ ≪ z can
universally be treated within the small-angle approximation.

To describe the scattering of light by large particles, we take advantage of the two-parameter
Reynolds-McCormick phase function [12]

a1(cos γ) =
α− 2

2π

g
(
1− g2

)α−2

(1 + g)α−2 − (1− g)α−2

1

(1 + g2 − 2g cos γ)α/2
, (5)
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Figure 1. Eigenvalue εI(p) as a function of variable p/σtr. Results of numerical calculations
with the Mie theory for aqueous suspension of polystyrene microspheres (red and blue symbols
correspond to diameters of 0.993 µm and 0.300 µm, respectively).

where α and g are the parameters. For α = 3, Eq.(5) coincides with the well-known Henyey-
Greenstein phase function. In scattering through small angles the Reynolds-McCorrmick phase
function falls off with increasing angle γ in accordance with a power law a1 ∼ 1/γα, 2 ≤ α ≤ 4.

Within the small-angle approximation, Eq.(1) takes the form [15]{
∂

∂z
+
θ2

2

∂

∂∆

}
Ĩ (z, θ,∆) =

σtr
4π

2α−2(4− α)

∫
dθ′ Ĩ (z, θ,∆)− Ĩ (z, θ′,∆)

|θ − θ′|α
(6)

where Ĩ (z, θ,∆) = c−1 exp(−σact)I (z, θ,∆), θ is the angle between vectors Ω and Ω0, and
∆ = ct − z is the difference between path length ct and depth z, σtr = σ(1 − ⟨cos γ⟩) is the
transport scattering coefficient, and ⟨cos γ⟩ is the mean cosine of single scattering.

Using the Bessel transform with respect to the angular variable θ and the Laplace transform
with respect to ∆, we can reduce Eq.(6) to an eigenvalue problem for the equation that resembles
the stationary Schrödinger equation [15]. For relatively small delays, ∆ ≪ z, only the minimum
eigenvalue and the corresponding eigenfunction contributes to the intensity of the transmitted
pulse. Therefore Ĩ (z, θ,∆) can be presented in the form [15]

Ĩ (z, θ,∆) =

i∞∫
−i∞

dp

2πi
exp (p∆− εI(p)z)

i∞∫
0

ldl

2π
J0(lθ)ΦI(l, p)

i∞∫
0

l′dl′

2π
ΦI(l

′, p) (7)

where εI(p) and ΦI(l, p) are determined from the equation(
−p
2
∆ + σ (1− a1(l))

)
ΦI(l, p) = εI(p)ΦI(l, p) (8)

The function a1(l) appearing in Eq.(8) is the Bessel transform of the small-angle phase function
a1(ΩΩ′) ≈ a1(|θ − θ′|). For the Reynolds-McCormick phase function

σ(1− a1(l)) =
σtr
2

(
4− α

α− 2

)
Γ(2− α/2)

Γ(α/2)
· lα−2 (9)

In the case of α = 3 which corresponds to the Henyey-Greenstein phase function, σ(1− a1(l)) =
σtrl.
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From Eqs.(8), (9) it follows that the eigenvalue εI(p) can be written as [15]

εI(p) = cασ
2/α
tr p1−2/α (10)

where cα is the numerical coefficient which depends only on the parameter α. Our numerical
calculations carried out for polystyrene microspheres of diameters 0.3 µm and 0.993 µm at
the wavelength λ = 0.633 µm (see Fig.1) are approximated by the relations ϵI(p)/σtr =
1.15(p/σtr)

0.357, α = 3.11 and ϵI(p)/σtr = 1.62(p/σtr)
0.381, α = 3.23, respectively.

4. Degree of polarization
For the basic modes of linear and circular polarizations, solutions of Eqs.(3) and (4) can also be
presented in the form that is similar to Eq.(7). The corresponding solutions differ from Eq.(7)
only by the specific values of the eigenvalues, εW (p) and εV (p), and the eigenfunctions, ΦW (l, p)
and ΦV (l, p).

In the case of highly forward multiple scattering, the values of εW (p) and εV (p) turn out
to be close to εI(p) provided that the value of p is rather great, p > σtr. This follows directly
from our numerical calculations of εI(p) , εW (p) and εV (p) with the use of the corresponding
characteristic equations [11] both for the Reynolds-McCormick phase function and for large
Mie-particles (polystyrene and silica microspheres in water). Therefore we can calculate the
values of εW (p) and εV (p) analytically with a perturbation theory taking the solution of the
scalar transfer equation (8) as the first approximation. Within such an approach, the difference
between the values of εI(p), εW (p) and εV (p) can be written in the form

δεW,V (p) = σ

∞∫
0

ldl

2π
ΦI(l, p)∆aW,V (l)ΦI(l, p) (11)

where ∆aW,V (l) is the difference between a1(l) and the Bessel transforms of the ”effective” phase
functions appearing in Eqs.(3) and (4).

The small-angle transfer equation for the basic mode of linear polarization differs from Eq.(8)
only by the ”perturbation” term σ∆aW,V (l) which has the form [9,10]

σ∆aW ≈ σ∆ageomW + σ∆adynW =
σ

2

[
1

l

∂

∂l

[
∂a1(l)

∂l

∂

∂l

]]
+
σ

2
(a1(l)− a2(l)) (12)

The first term in Eq.(12) is responsible for the ”geometrical” depolarization due to the
Rytov effect. The second term describes the ”dynamical” depolarization. With the standard

perturbation theory [16], the value of εW (p) can be written as εW = εI + δεgeomW + δεdynW . The
”geometrical” contribution to εW is determined by

δεgeomW (p) =
σ

2

∞∫
0

ldl

2π
ΦI(l, p)

[
1

l

∂

∂l

[
∂a1(l)

∂l

∂

∂l

]]
ΦI(l, p) =

Γ(2− α/2)

2
σtr

(
εI(p)

p

)3−α/2
(13)

When deriving Eq.(13), we use the eigenfunction ΦI(l, p) approximated by [15]

ΦI(l, p) =

√
4πεI(p)

p
exp

(
− l

2εI(p)

2p

)
(14)

The ”dynamical” contribution to εW depends on ratio εI(p)/p in a similar way,

δεdynW (p) =
σ

2

∞∫
0

ldl

2π
ΦI(l, p) [a1(l)− a2(l)] ΦI(l, p) =

σtr(4− α)

2α
·
(
εI(p)

p

)3−α/2
(15)
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For the basic mode of circular polarization, the difference ∆aV is only due to the ”dynamical”

mechanism of depolarization. The value of δεV turns out to be two times greater than δεdynW .
Evaluating the integral in Eq.(7) and the integrals in the corresponding representations for

the modes W and V by the saddle-point method, we obtain the following expressions for the
degree of polarization of linearly and circularly polarized pulses

PL =
W

I
= exp

(
− (β(α) + η(α)) · σtrz · ⟨θ2⟩3−α/2z,t

)
,

PC =
V

I
= exp

(
−2η(α) · σtrz · ⟨θ2⟩3−α/2z,t

)
(16)

where β(α) = Γ (3− α/2) /24−α/2, η(α) = (4− α)/23+α/2 and

⟨θ2⟩z,t =
2α

α− 2

(
∆

z

)
is the mean square of the multiple-scattering angle θ for the Reynolds-McCormick phase
function [15]. From Eq.(16) it follows that the degree of polarization depends on one
dimensionless variable

ξ = σtrz

(
∆

z

)α−3/2

. (17)

This conclusion is confirmed by comparison of our result (16) with data of Monte Carlo
simulations for aqueous suspension of polystyrene microspheres [6] (see Fig. 2). Numerical
simulation [6] was carried out for linearly polarized light and for various values of the transport
optical thickness σtrz. Depolarization ratio DL = (1 − PL)/(1 + PL) was presented in [6] as
a function of the normalized delay ∆/z. When going from ∆/z to the variable ξ we obtain a
virtually universal pattern of data [6]. As follows from Fig. 2 the results of our calculations are
in excellent agreement with the data of numerical simulations.

0 1 2

0.1

1
L
D

ξ

)a
0 1 2

0.1

1
L
D

ξ
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Figure 2. Depolarization ratio as a function of variable ξ. Symbols (n – σtrz = 2, s –
σtrz = 4, l – σtrz = 10) are the results of Monte Carlo simulations [6] for aqueous suspension
of polystyrene microspheres of diameter 0.3 µm (a) and 0.993 µm (b). Solid lines are the results
of our calculations (σtr/σ = 0.339, α = 3.11 (a) and σtr/σ = 0.085, α = 3.23 (b)).
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5. Conclusions
We have studied the transmission of an ultrashort polarized pulse through highly scattering
media. A theoretical model based on the Reynolds-McCormick phase function has been proposed
for the analysis of depolarization of light in the medium with large inhomogeneities. In
accordance with the model, the polarization state is determined by the intensity and the basic
modes of linear and circular polarizations. The values of W and V differ from the intensity I
only by the factors that are responsible for additional attenuation of W and V with increasing
the delay ∆ = ct − z. The results of our calculations are in excellent agreement with the data
of numerical simulations [6] and make it possible to estimate the dependence of the degree of
polarization on time and characteristics of the medium.
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