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Abstract. Quantum information processing should be generated through control of quantum
evolution for physical systems being used as resources, such as superconducting circuits, spin-
spin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics
which should be translated into more natural languages for quantum information processing.
On this terrain, this language should let to establish manipulation operations on the associated
quantum information states as classical information processing does. This work shows how a
kind of processing operations can be settled and implemented for quantum states design and
quantum processing for systems fulfilling a SU(2) reduction in their dynamics.

1. Introduction
Synergy between quantum mechanics and computer science is generating disruptive
developments. In the gate array version of quantum processing, appropriate logical gates are
essential. They adopt forms inspired by classical computation, despite their construction is based
on the behavior of quantum systems and normally is based on universal sets of quantum gates
with which any processing task can be expressed [1, 2]. Commonly, some universal gates still
should be constructed as iterative steps of controlled physical evolutions. Methods as Cosine-
Sine decomposition [3], multiplexor gates [4], Gray codes basis [5] or q−deformed algebras [6]
are used as approaches. In the SU(2) reduction approach [7, 8] for two qubits, which has been
extended to multipartite systems [9], unitary factorization and natural gates for two-qubits has
been obtained, letting to define basic operations closer to classical computation. This paper
exploits the SU(2) decomposition [10] to address the evolution into basic processing tasks for
state design. The second section presents the technical details of SU(2) reduction to give a
generic processing gate. The third section presents key operations for quantum processing. The
fourth section presents examples of quantum state design. Last section set the conclusions.

2. SU(2) decomposition technical details
SU(2) decomposition was developed for a generic Hamiltonian combining 2d two-level interacting
subsystems resembling the Heisenberg-Ising interaction and including local driven operations
[11]. It is reached with an appropriate basis to reduce the Hamiltonian into a 2×2-block matrix
and as a consequence, the evolution matrix in a block matrix with blocks in SU(2):

http://creativecommons.org/licenses/by/3.0


2

1234567890

ICMSQUARE IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 936 (2017) 012083  doi :10.1088/1742-6596/936/1/012083

H =


SH1 0 ... 0
0 SH2 ... 0
...

...
. . .

...
0 0 ... SH22d−1

 ⇒ U =


SU 1 0 ... 0
0 SU 2 ... 0
...

...
. . .

...
0 0 ... SU 22d−1

 (1)

the inheritance for U is due to the group properties of block matrices via time ordered integral

SU i = τ{e−
i
h̄

∫ t

0
SHidt′}. Basis elements should be rearranged to show the blocks as in (1). For:

H(j,k′) = HD +H
(j,k′)
ND with : H

(j,k′)
ND =

1∑
t′=0

h(j4k′+dt′−1)2d
4

2d⊗
s=1

σ(j4k′+dt′−1)2d
4,s

(2)

HD ≡
3∑

i′=1

d∑
k=1

h(i′(4k−1+4k+d−1))2d
4

2d⊗
s=1

σ(i′(4k−1+4k+d−1))2d
4,s

as Hamiltonian (h{ik} are time-dependent real functions), including a) non-local interactions
HD (spin-spin couplings like) between all paired parts [k, k + d] (called correspondent) in three

directions i′ = 1, 2, 3, giving the diagonal entries; and b) H
(j,k′)
ND , a couple of local interactions

on the correspondent pair [k′, k′ + d] in direction j, giving the diagonal-off entries [9]. For:

∣∣∣ΨId4〉 =
1√
2d

2d−1∑
E,D=0

(σ̃i1 ⊗ ...⊗ σ̃id)Ed2 ,Dd
2

∣∣∣Ed2〉⊗ ∣∣∣Dd2〉 (3)

the generalized Bell states (GBS) basis with σ̃i 6=2 = σi, σ̃2 = iσ2 [12], the decomposition
is achieved. Ed2 ,Dd2 are base-2 numbers with d digits (E ,D ∈ {0, 1, ..., 2d − 1}) representing
{ε1, ..., εd}, {δ1, ..., δd}, with εs, δs ∈ {0, 1} (digits appear reversed in Ed2 or Id4 ), giving:

〈
ΨId4
|H(j,k′)|ΨKd

4

〉
= δIK

3∑
i′=1

d∑
k′′=1

c
ik′′ ,ik′′
i′,i′ h(i′(4k′′−1+4k′′+d−1))2d

4
+

1∑
t′=0

δ
{k′}
IK F

jδ0,t′ ,jδ1,t′
j,k′ h(j4k′+dt′−1)2d

4
≡ HDIK +H

(j,k′)
ND IK (4)

with the coefficients c
ik′′ ,ik′′
i′,i′ , F jδ0,t′ ,jδ1,t′j,k′ reported in [11]. The most important aspect is the

establishment of blocks. Due to the coefficient properties, they are located in the rows
I = {i1i2...in} and I ′ = {i′1i′2...i′n} differing in only one subscript i′k 6= ik with the correspondence
rule: 0 ↔ j, i ↔ k, being j the direction of local driven interactions in (2) and i, j, k a
permutation of 1, 2, 3. This is the relation rule for the GBS basis elements in the blocks. Hilbert
space H2d becomes the direct sum of 22d−1 subspaces generated by these GBS basis elements.
There, the dynamics mixes the probabilities only inside each subspace. Because states in the
basis are entangled (non-maximal), each block SU i in (1) includes the controlled gate operations.
For the time-independent case, in terms of SHI,I′ = {hij} in (4):

SUI,I′ = ei
h11+h22

2h̄
t

(
cosωt+ ih11−h22

2h̄ω sinωt ih12
h̄ω sinωt

i
h∗12
h̄ω sinωt cosωt− ih11−h22

2h̄ω sinωt

)
(5)

with: h̄ω =
√
|h12|2 + 1

4 |h11 − h22|2. Clearly SUI,I′ ∈ U(1)×SU(2). F jd,jd+s

j,k′ in (4) is imaginary

only if jd or jd+s are 2, then only one n1 or n2 is non-zero.
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3. Stating notable manipulation operations in quantum information
Note SUI,I′ byself is a general SU(2) operation in the form of a mixing matrix. Other notable

operations are easily achievable. The first one with h11+h22
2h̄ω = ( αm − 1)π, ωt = mπ;n,m ∈ Z, the

quasi-identity gate SUI,I′ = eiαπII,I′ ≡ IαI,I′ . The second one is a family of operations achieved

with ωt = 2n+1
2 π, h11−h22

2h̄ω = ε, h12
h̄ω = icδ, h11+h22

2h̄ω = 2(m − 1
2);n,m ∈ Z, c ∈ {0, 1}, δ ∈ R, where

ε2 + δ2 = 1. c depends on the direction of local interaction. We get for SUI,I′ on the GBS basis:

Hc
m(δ, ε)I,I′ = (−1)m

(
ε icδ

(−i)cδ −ε

)
(6)

It is widely versatile: a) if sεε = δ = 1√
2

(sε = sign(ε), ± in the notation), a Hadamard-like gate

H
m,c,sign(ε)
I,I′ is obtained; b) if δ = 1, the exchange-like gate Em,cI,I′ is obtained [7], a limit case for

the independent-time case when h12 � h11 − h22 (5). Despite there are only two independent
blocks in the evolution matrix, they have 3d + 3 parameters (including time and Hamiltonian
terms involved). By rearranging the parts of correspondent pairs and controlling non-local and
local strengths as well as their directions, global operations could be made on the entire quantum
information space of the system.

4. Quantum states design: maximal entangled states
Quantum design and manipulation become reduced to operations transforming indexes and
changing probability amplitudes in the GBS basis elements. Depending on the path of the state
to manipulate, this task could be still hard. Despite one index exchange on the states are limited
to reach general states on 2d−qubits, by rearranging the pairing of qubits, we can extend the
entanglement manipulation. To illustrate the procedure for four qubits (d = 2), we show the
construction of |GHZ〉4 and |W 〉4, which could be expressed in the GBS basis as:

|GHZ〉4 =
1√
2

(|Ψ0,0〉+ |Ψ3,3〉) =
1√
2

∑
I∈{0,15}

|ΨI〉 (7)

|W 〉4 =
1

2
( |Ψ1,0〉+ |Ψ0,1〉+ |Ψ3,1〉+ |Ψ1,3〉) =

1

2

∑
I∈{1,4,7,13}

|ΨI〉 (8)

In terms of the previous operations and departing from |0000〉, the steps to achieve |GHZ〉4 are:

|0000〉 H(3,1)

−→
H0,0,+

0,3 ⊕H0,0,+
12,15

1√
2
|Ψ0〉1 ⊗ (|Ψ0〉2 + |Ψ3〉2) (9)

H(3,2)

−→
H0,0,+

0,12

|Ψ0〉1 ⊗ |Ψ0〉2 = |Ψ0〉 =
1

2

3∑
i=0

|Ψi〉1′ ⊗ |Ψi〉2′

H(3,1′)
−→

H0,0,+
0,3 ⊕H0,0,+

12,15⊕H
0,0,+
5,6 ⊕H0,0,+

9,10

1√
2

(|Ψ3〉1 ⊗ |Ψ0〉2 + |Ψ1〉1 ⊗ |Ψ1〉2)

H(3,1)

−→
E0,0

0,3⊕I
0
5,6

1√
2

(|Ψ0〉1 ⊗ |Ψ0〉2 + |Ψ1〉1 ⊗ |Ψ1〉2) =
1√
2

(|Ψ0〉+ |Ψ5〉)

H(2,1)

−→
E0,1

5,7⊕I
0
0,2

1√
2

(|Ψ0〉1 ⊗ |Ψ0〉2 + i |Ψ3〉1 ⊗ |Ψ1〉2)

H(2,2)

−→
E1,1

7,15⊕I
0
0,8

1√
2

(|Ψ0〉1 ⊗ |Ψ0〉2 + |Ψ3〉1 ⊗ |Ψ3〉2) = |GHZ〉4
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where symbol above the arrow point to the Hamiltonian being used, while symbol below points
to the concrete operations being used. Two notations for the kets are used by convenience:
|Ψk〉j is the Bell state |Ψk〉 on the jth correspondent pair, while |Ψi1,i2,...,id〉 = |ΨI〉 = is the

I = 4d−1id + ... + 4i2 + i1 element in the GBS basis. Note that pairs 1 and 2 contains the
parts [1, 2] and [3, 4] respectively, while 1′ and 2′ contains the parts [1, 4] and [2, 3] respectively.
This temporary rearrangement lets enlarge the entanglement into the whole system. Finally,
departing from 1√

2
(|Ψ0〉+ |Ψ5〉) (included as step in the previous process), we can achieve |W 〉4:

1√
2

(|Ψ0〉+ |Ψ5〉)
H(1,2)

−→
E0,0

0,4⊕E
0,0
1,5

1√
2

(|Ψ0〉1 ⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ |Ψ0〉2) (10)

H(3,1)

−→
H0,0,+

4,7 ⊕I2p
1,2

1√
2

(
1√
2

(|Ψ0〉1 + |Ψ3〉1)⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ |Ψ0〉2)

H(3,2)

−→
I2q
4,8⊕I

2r
7,11⊕H

0,0,+
1,13

1

2
((|Ψ0〉1 + |Ψ3〉1)⊗ |Ψ1〉2 + |Ψ1〉1 ⊗ (|Ψ0〉2 + |Ψ3〉2))

=
1

2
(|Ψ4〉+ |Ψ7〉+ |Ψ1〉+ |Ψ13〉) = |W 〉4

with p, q, r ∈ Z. Block independence has been applied justifying simultaneous operations, despite
only two are possible (but repeated through different blocks). This couple of examples shows
briefly the manipulation model of quantum information applied to state design.

5. Conclusions
While quantum system is the object where interactions work, quantum information is the
associated element containing the sensible data of the history and the existence properties
of it. The generic Hamiltonian in this work comprises representative systems in quantum
information processing. SU(2) reduction lets understand quantum processing as a simple series
of operations manipulating directly the underlying quantum information while GBS basis works
as a universal grammar there. Still, the general state design process is an open problem, in
particular those containing the complexity of entanglement creation in all their possible levels
between separability and maximal entanglement.
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