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Abstract. Systems of parametrical lattice Boltzmann equations (LBE’s) are considered. The
formulae for the apparent viscosity for the general representation of these systems is obtained by
Chapman — Enskog asymptotic expansion on Knudsen number. Obtained expression represents
viscosity as a function of the relaxation parameter and parameter of the LBE’s. Necessary
stability conditions in form of inequalities are derived from the non-negativity condition of the
apparent viscosity. The validity of the stability conditions are demonstrated by the solution of
lid-driven cavity flow problem.

1. Introduction
In last years lattice Boltzmann method (LBM) established itself as a powerful tool for the
numerical solution of different problems of mechanics and physics of gases and fluids [1, 2, 3].
The main feature of the method is an application of kinetic equations, such as Boltzmann and
Bhatnaghar – Gross – Krook (BGK) equations to the modelling of flows, instead of the equations
of continuum mechanics (such as Navier – Stokes equations), as it is realized in traditional
computational fluid mechanics. Great advantage of LBM consists with high parallelism of its
computational algorithms (e.g. see [4, 5]).

One of the problems of the theory of LBM is a conditional stability of its main computational
difference scheme named lattice Boltzmann equation (LBE), which has an explicit nature. This
problem restrict the values of the relaxation parameter of the modelled system, so the range of
the considered physical processes is restricted. The problem may be solved by the construction
of implicit schemes.

Implicit schemes for LBM constructed by finite-difference and finite-element discretisation
procedures are considered in [3, 6, 7, 8]. In [10] implicit scheme constructed by θ-method is
applied to the solution of steady-flow problems. P. Asinari in [9] construct implicit schemes
for multi-relaxation-time LBM with various orders of approximation. In [11] implicit LBE is
constructed and applied to the solution of phase-change problem with Stefan condition. In
[12] the second order LBE for multiphase systems is obtained. The equation is constructed by
application of trapezoidal quadrature rule to the integral form of the system of kinetic equations.

In the presented paper the system of parametrical LBE’s derived in [13] is investigated.
The expression for the apparent viscosity is obtained by the method of Chapman – Enskog
asymptotic expansion. Necessary stability conditions in form of inequalities on relaxation and

http://creativecommons.org/licenses/by/3.0
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scheme parameters are introduced. The validity of the proposed conditions is demonstrated by
the numerical solution of lid-driven cavity flow problem.

The structure of the paper is follows. In section 2 the system of parametrical LBE’s
is presented. In section 3 the expression for the apparent viscosity is derived and stability
conditions are formulated. In section 4 lid-driven cavity problem is considered. Some conclusion
remarks are made in section 5.

2. Parametrical lattice Boltzmann equations
The system of BGK kinetic equations for the ensemble of particles with velocities Vi is written
as:

∂fi
∂t

+ Vi∇fi = − 1

λ
(fi − f (eq)i ), (1)

where fi = fi(t, r) are the distribution functions of particles with velocities Vi = V ei, where
V = l/δt, l is a mean free path, δt is a mean free time, ei are the dimensionless vectors, t is a

time, r is a vector of space variables, λ is a relaxation time, f
(eq)
i are the equilibrium distribution

functions. In two-dimensional case the following set of vectors named D2Q9 pattern may be
used [1]: e1 = (0, 0), e2 = (1, 0), e3 = (0, 1), e4 = (−1, 0), e5 = (0,−1), e6 = (1, 1), e7 = (−1, 1),
e8 = (−1,−1), e9 = (1,−1).

System (1) may be rewritten in integral form on the time interval [t, t+ δt] [14]:

fi(t+ δt, r + Viδt)− fi(t, r) = − 1

λ

δt∫
0

(fi(t+ ξ, r + Viξ)− f (eq)i (t+ ξ, r + Viξ))dξ. (2)

System of integral equations (2) in [13] is rewritten in equivalent form with parametrical
coefficients:

fi(t+ δt, r + Viδt)− fi(t, r) = −1− σ
λ

δt∫
0

(fi(t+ ξ, r + Viξ)− f (eq)i (t+ ξ, r + Viξ))dξ−

−σ
λ

δt∫
0

(fi(t+ ξ, r + Viξ)− f (eq)i (t+ ξ, r + Viξ))dξ, (3)

where σ ∈ [0, 1] is a dimensionless parameter.
Parametrical LBE’s may be obtained from system (3) by discretization of (3) on the time

and space grids and by application of quadrature formulas to the computation of integrals in
right part of (3). In [13] six systems of parametrical LBE’s are obtained by application of simple
quadrature formulas of low algebraic accuracy. These difference equations may be presented in
following form:

fi(tj + δt, rkl + Viδt)− fi(tj , rkl) = A(fi(tj , rkl)− f
(eq)
i (tj , rkl))+

+B(fi(tj + δt, rkl + Viδt)− f (eq)i (tj + δt, rkl + Viδt)), (4)

where A = A(σ, τ), B = B(σ, τ), τ = λ/δt is a dimensionless relaxation time, tj is a node of time
grid constructed with step δt, rkl is a node of space grid constructed with step l. System (4)
represent systems of implicit difference equations which are defined by following dependencies
of A and B on σ:

1) system 1: A = −(1− σ)/τ, B = −σ/τ .
2) system 2: A = −σ/τ, B = −(1− σ)/τ .
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3) system 3: A = −(1− σ)/2τ , B = −(1 + σ)/2τ .
4) system 4: A = −(1 + σ)/2τ , B = −(1− σ)/2τ .
5) system 5: A = −σ/2τ , B = (σ − 2)/2τ .
6) system 6: A = (σ − 2)/2τ , B = −σ/2τ .

3. Apparent viscosity of parametrical LBE’s
The expression for apparent viscosity plays an important role in practical computations as a
tool for the stability analysis and as a value of kinematic viscosity, used in computations of real
flows, different from the real value of the viscosity, which in case of D2Q9 pattern is presented
as [15]:

ν =
λV 2

3
. (5)

The formulae for the apparent viscosity may be derived from differential approximation of (4)
by the method of Chapman — Enskog asymptotic expansion [15].

Differential approximation of (4) is obtained by application of Taylor formulae:

fi(t+ δt, r + Viδt) = fi(t, r) +
∂fi(t, r)

∂t
δt+

∂fi(t, r)

∂xα
Viαδt+

(δt)2

2

∂2fi(t, r)

∂t2
+

+
(δt)2

2

∂2fi(t, r)

∂xα∂xβ
ViαViβ + (δt)2

∂2fi(t, r)

∂t∂xα
Viα + o(δt2). (6)

where the Einstein summation rule on Greek indices α and β is realised and x1 = x, x2 = y,
Vi1 = Vix, Vi2 = Viy.

The method of Chapman — Enskog expansion is based on the following expression on
Knudsen parameter ε = l/L, where L is a typical length of the flow domain:

fi ≈ f (0)i + εf
(1)
i + ε2f

(2)
i , (7)

where f
(0)
i = f

(eq)
i , f

(1)
i and f

(2)
i satisfy the following properties:

n∑
i=1

f
(1)
i =

n∑
i=1

f
(2)
i = 0,

n∑
i=1

f
(1)
i Vi =

n∑
i=1

f
(2)
i Vi = 0. (8)

Derivatives on independent variables are represented by following multiscale expansions
[15, 16]:

∂

∂t
= ε

∂

∂t1
+ ε2

∂

∂t2
,

∂

∂xα
= ε

∂

∂x1α
, (9)

where t1, t2, x11, x12 are the new variables.
Macrovariables, such as density ρ(t, r) and velocity u(t, r) are represented by following

formulas [16]:

ρ(t, r) =
n∑
i=1

fi(t, r), ρ(t, r)u(t, r) =
n∑
i=1

Vifi(t, r). (10)

By substitution of (6),(7),(9) into (4) and by application of (8) and (10) the following
equations for macrovariables are obtained:

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0, (11)
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∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
= − ∂p

∂xα
+ ν

∂

∂xβ

(
ρ

(
∂uβ
∂xα

+
∂uα
∂xβ

))
, (12)

where ν is an apparent viscosity represented in case of D2Q9 pattern by following formulae:

ν =

(
1 +

A−B
2

)
τ

3

l2

δt
. (13)

System (11)–(12) may be characterized as quasihydrodynamical system for modelling of semi-
compressible flows. In case of incompressible regime ρ = const and system (11)–(12) is rewritten
in form of Navier — Stokes system:

∂uα
∂xα

= 0,
∂uα
∂t

+ uβ
∂uα
∂xβ

= −1

ρ

∂p

∂xα
+ ν∆uα.

As it can be seen, expression (13) is different from the expression for real viscosity (5) due to
the presence in (13) of the fictitiuos term τ l2(A−B)/(6δt), which is named numerical viscosity.
This fact must be considered in computations of real flows.

Necessary stability conditions may be obtained from the condition ν ≥ 0 and are presented
by following theorem:

Theorem. Let system (4) is stable on initial conditions. So the following conditions on
coefficients σ and τ are realized:

1) For system 1:

σ ≥ 1

2
− τ,

is valid ∀σ ∈ [1/2, 1], ∀τ > 0.
2) For system 2:

σ ≤ τ +
1

2
,

is valid ∀σ ∈ [0, 1/2], ∀τ > 0.
3) For system 3:

σ ≥ −2τ,

is valid ∀σ ∈ [0, 1], ∀τ > 0.
4) For system 4:

σ ≤ 2τ,

is valid ∀σ ∈ [0, 1] when τ > 1/2 ∀σ ∈ [0, 2τ ] when τ < 1/2.
5) For system 5:

σ ≤ 1 + 2τ,

is valid ∀σ ∈ [0, 1] when ∀τ > 0.
6) For system 6:

σ ≥ 1− 2τ,

is valid ∀σ ∈ [0, 1] when τ > 1/2 and ∀σ ∈ [1 − 2τ, 1] when 0 < τ < 1/2, when σ = 1 is valid
∀τ > 0.
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1 1
2 2
3 3

Figure 1. The results of computation at Re = 400. Black line — the case of σ = 1, red line —
case of σ = 1/2, results from [17] are represented by blue dots

1 1

2 2

3 3

Figure 2. The results of computation at Re = 1000. Black line — the case of σ = 1, red line
— case of σ = 1/2, results from [17] are represented by blue dots

4. Numerical solution of lid-driven cavity flow problem
The problem is stated in rectangular domain {(x, y)|x ∈ [0, P ], y ∈ [0, P ], P > 0}. Boundary
conditions are written as [17]:

ux(t, x, 0) = uy(t, x, 0) = 0, ux(t, x, P ) = U0, uy(t, x, P ) = 0, x ∈ [0, P ],

ux(t, 0, y) = uy(t, 0, y) = ux(t, P, y) = uy(t, P, y) = 0, y ∈ [0, P ),

where U0 = const 6= 0. Boundary conditions for distribution functions fi reproduced presented
boundary conditions on velocity are realized by the approach described in [18].

Results of computations on the space grid of 100× 100 nodes are compared with the results
from [17] at cases of different values of Reynolds number Re. The scheme based on system 1 is
applied at cases of σ = 1 (first order) and σ = 1/2 (second order). This results are presented at
fig. 1–2. The systems of nonlinear equations at every grid node are solved by Newton method.
Two schemes obtained from system 1 at cases of σ = 1 and 1/2 are considered. At fig. 1 case of
Reynolds number Re = 400 is considered at case of 6000 time nodes, when at σ = 1 τ = 0.1126
and at σ = 1/2 τ = 0.6126, at fig. 2 — the case of Re = 1000 with 1000 time nodes, when
at σ = 1 τ = 0.2354 and at σ = 1/2 τ = 0.7354. The plots of ux/U0 are presented at the line
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{x = 0.5P, y ∈ [0, P ]}, plots of uy/U0 — at the points of line {x ∈ [0, P ], y = 0.5P}. As it can
be seen, the obtained results are demonstrated the validity of presented stability conditions. At
table 1 the values of the norm of the vector of mean square errors for ux and uy are presented.
As it can be seen, the results obtained by scheme of second order are closest to the null at
all values of Re and may be considered as a numerical solution obtained with higher order of
accuracy.

Table 1. The values of the norm of the vector of mean square errors of the velocity vector
components at different values of Re.

σ Re = 50 Re = 100 Re = 400 Re = 1000

1 5.0514 · 10−4 1.1237 · 10−4 5.1427 · 10−4 2.3744 · 10−3

1/2 5.8641 · 10−5 3.0376 · 10−5 3.4718 · 10−5 2.2343 · 10−4

5. Conclusion
In the presented paper parametrical LBE’s are considered. The formulae for the apparent
viscosity is obtained by Chapman — Enskog asymptotic expansion. Obtained expression
represents viscosity as a function of the relaxation parameter and parameter of the LBE’s.
Necessary stability conditions in form of inequalities are derived from the non-negativity
condition of the apparent viscosity. The validity of the stability conditions are demonstrated by
the solution of lid-driven cavity flow problem.

The proposed idea may be realized in analytical investigation of parametrical LBE’s with
many time steps, obtained by application of quadrature formulas of different algebraic orders.
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