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Abstract. Two-body bound states such as mesons are described by solutions of the Bethe–
Salpeter equation. We discuss recent results for the pseudoscalar and vector meson masses and
leptonic decay constants, ranging from pions up to cc̄ bound states. Our results are in good
agreement with data. Essential in these calculation is a momentum-dependent quark mass
function, which evolves from a constituent-quark mass in the infrared region to a current-
quark mass in the perturbative region. In addition to the mass spectrum, we review the
electromagnetic form factors of the light mesons. Electromagnetic current conservation is
manifest and the influence of intermediate vector mesons is incorporated self-consistently. The
results for the pion form factor are in excellent agreement with experiment.

1. Dyson–Schwinger equations
The set of Dyson–Schwinger equations form a Poincaré covariant framework within which to
study hadrons [1, 2]. In rainbow-ladder truncation, they have been successfully applied to
calculate a range of properties of the light pseudoscalar and vector mesons, see Ref. [2] and
references therein.

The DSE for the renormalized quark propagator S(p) in Euclidean space is [1]

S(p)−1 = i Z2(ζ) /p + Z4(ζ)m(ζ) + Z1(ζ)
∫

d4q

(2π)4
g2Dµν(p − q) λi

2 γµ S(q) Γi
ν(q, p) , (1)

where Dµν(p − q) and Γi
ν(q; p) are the renormalized dressed gluon propagator and

quark-gluon vertex, respectively. The most general solution of Eq. (1) has the
form S(p)−1 = i /pA(p2) + B(p2), renormalized at spacelike ζ2 according to A(ζ2) = 1 and
B(ζ2) = m(ζ) with m(ζ) the current quark mass.

Mesons are described by solutions of the homogeneous Bethe–Salpeter equation (BSE)

ΓH(p+, p−; P ) =
∫

d4q

(2π)4
K(p, q; P ) S(q+) ΓH(q+, q−; P )S(q−) , (2)

at discrete values of P 2 = −M2
H , where MH is the meson mass. In this equation, p+ = p + P/2

and p− = p−P/2 are the outgoing and incoming quark momenta respectively, and similarly for
q±. The kernel K is the renormalized, amputated qq̄ scattering kernel that is irreducible with
respect to a pair of qq̄ lines. Together with the canonical normalization condition for qq̄ bound
states, Eq. (2) completely determines the bound state Bethe–Salpeter amplitude (BSA) ΓH .
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Different types of mesons, such as pseudoscalar or vector mesons, are characterized by different
Dirac structures.

To solve the BSE, we use the ladder truncation,

K(p, q; P ) → −4παeff((p − q)2) D0
µν(p − q)λi

2 γµ ⊗ λi

2 γν , (3)

in conjunction with the rainbow truncation for the quark DSE, Eq. (1): Γi
ν(q, p) → λi

2 γν and
Z1g

2Dµν(k) → 4παeff(k2)D0
µν(k), with k = p − q. Here, D0

µν(k) is the free gluon propagator
in Landau gauge, and αeff(k2) an effective quark-quark interaction, which reduces to the one-
loop running coupling of perturbative QCD (pQCD) in the perturbative region. This truncation
preserves both the vector Ward–Takahashi identity (WTI) for the qq̄γ vertex and the axial-vector
WTI, independent of the details of the effective interaction. The latter ensures the existence
of massless pseudoscalar mesons associated with dynamical chiral symmetry breaking (DχSB)
in the chiral limit [3, 4]. In combination with an impulse approximation, the former ensures
electromagnetic current conservation [5, 6].

2. Quark propagator: an overview
A momentum-dependent quark mass function M(p2) = B(p2)/A(p2) is central to QCD. In the
perturbative region this mass function gives the one-loop perturbative running quark mass

M(p2) � m̂(
1
2 ln

[
p2/Λ2

QCD

])γm
, (4)

with the anomalous mass dimension γm = 12/(33− 2Nf ). Dynamical chiral symmetry breaking
means that this mass function is nonzero even though the current-quark masses are zero. In the
chiral limit the mass function is [7]

Mchiral(p2) � 2π2γm

3
−〈q̄q〉0

p2
(

1
2 ln

[
p2/Λ2

QCD

])1−γm
, (5)

with 〈q̄q〉0 the renormalization-point-independent vacuum quark condensate [3].
It is a longstanding prediction of DSE studies in QCD that the dressed quark propagator

receives strong momentum-dependent corrections at infrared momenta, see e.g. Refs. [1, 2]
and references therein. Provided that the (effective) quark-quark interaction reduces to the
perturbative running coupling in the ultraviolet region, it is also straightforward to reproduce
the asymptotic behavior of Eqs. (4) and (5) [8, 9]. Both these phenomena are illustrated in the
left panel of Fig. 1. In this figure one can also see that the dynamical mass function of the u and
d quarks becomes very similar to that of quarks in the chiral limit in the infrared region. This
is a direct consequence of DχSB, and leads to a mass function of the order of several hundred
MeV for the light quarks in the infrared, providing one with a constituent mass for quarks inside
hadrons, even though the corresponding current quark masses are only a few MeV.

These predictions were recently confirmed in lattice simulations of QCD [10–12]. Quantitative
agreement between the lattice simulations and the DSE results for the quark propagator
functions can be obtained within the rainbow truncation via a suitable choice for the effective
quark-quark interaction [13]. Pointwise agreement for a range of quark masses requires this
interaction to be flavor-dependent [14], suggesting that dressing the quark-gluon vertex Γi

ν(q, p)
is important. Indeed, both lattice simulations [15] and DSE studies [16–18] of this vertex indicate
that Γi

ν(q, p) deviates significantly from a bare vertex in the nonperturbative region. A (flavor-
dependent) nonperturbative vertex dressing could make a significant difference for the solution
of the quark DSE [16,19], as can be seen from the right panel of Fig. 1. The consequences of a
dressed vertex for the meson BSEs are currently being explored [16] and indications are that in
the pseudoscalar and vector channels, the effects are small [16, 20,21].
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Figure 1. The dynamical quark mass function M(p2) for different quark flavors (left, adapted
from Ref. [3]) and a comparison of the chiral-limit quark mass function with the lattice
data [11,12] (right, adapted from Ref. [19]).

3. Pseudoscalar mesons: ground and excited states
The meson spectrum contains three pseudoscalars with quantum numbers IG(JP )L = 1−(0−)S
and masses below 2 GeV: π(140); π(1300); and π(1800). In a constituent-quark model, these
mesons are viewed as the first three members of a qq̄ n 1S0 trajectory, where n is the principal
quantum number with the ground state π0 (the π(140)), and the others are its first two radial
excitations, π1 and π2. The pseudoscalar trajectory is particularly interesting, because its lowest
mass member is QCD’s Goldstone mode. Therefore an explanation should describe both chiral
symmetry and its dynamical breaking as well as a correlation of the ground and excited states
via an approximately linear radial Regge trajectory. The latter is easily realized in Poincaré
invariant quantum mechanics [22] but the former is not.

3.1. Chiral symmetry
The chiral properties of QCD are manifest in the axial-vector WTI, which reads

PµΓ5µ(q+, q−; P ) = S−1(q+)iγ5 + iγ5S
−1(q−) − 2i mq(ζ) Γ5(q+, q−; P ) , (6)

with Γ5µ(q+, q−; P ) and Γ5(q+, q−; P ) the renormalized dressed axial-vector and pseudoscalar
vertices, each satisfying an inhomogeneous extension of Eq. (2). Equation (6) is an exact
statement in QCD implying that the kernels of the quark DSE, Eq. (1), and of the BSEs have
to be intimately related. A weak coupling expansion of the DSEs yields perturbation theory
and satisfies this constraint, but is not useful in the study of intrinsically nonperturbative
phenomena. However, a systematic and symmetry preserving nonperturbative truncation
scheme exists [16, 20, 21], allowing for both elucidation and illustration of the consequences
of the axial-vector WTI.

Pseudoscalar mesons appear as pole contributions to the axial-vector and pseudoscalar
vertices at P 2 = −M2

πn
. The residues of these poles are

fπn Pµ = Z2(ζ)
∫

d4q

(2π)4
Tr [γ5γµ S(q+) Γπn(q+, q−; P )S(q−) ] , (7)

iρπn(ζ) = Z4(ζ)
∫

d4q

(2π)4
Tr [γ5 S(q+) Γπn(q+, q−; P )S(q−) ] , (8)
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both of which are gauge invariant and cutoff independent. It follows from Eq. (6) that these
residues satisfy the following exact identity in QCD [4,23]

fπnM2
πn

= 2 m(ζ) ρπn(ζ) , (9)

valid for every 0− meson [24], irrespective of the magnitude of the current quark mass [25].
For the π0, DχSB yields: limm̂→0 fπ0 �= 0 and limm̂→0 ρ(ζ) = −2〈q̄q〉0ζ/f0

π0
�= 0. Hence,

the Gell-Mann–Oakes–Renner relation emerges as a corollary of Eq. (9) and the ground state
pion is QCD’s Goldstone mode [4]. For the n ≥ 1 pseudoscalar mesons one has Mπn≥1

> Mπ0

by assumption, and hence Mπn>0 �= 0 in the chiral limit. Furthermore, the ultraviolet behavior
of the quark-antiquark scattering kernel in QCD guarantees that ρπn(ζ) is finite in the chiral
limit. Hence, it is a necessary consequence of chiral symmetry and the axial-vector WTI that
fπn vanishes in the chiral limit for all excited pseudoscalar mesons (i. e. for all n > 0) [24].

3.2. Numerical results
We now illustrate the exact results reviewed above in a model that both preserves QCD’s
ultraviolet properties and exhibits DχSB, namely the rainbow-ladder truncation of the set of
DSEs. For the infrared behavior of the effective quark-quark interaction, αeff(k2), we employ
an Ansatz [3,26] that is sufficiently enhanced in the infrared to produce a realistic value for the
vacuum quark condensate of about (240 GeV)3. The model parameters, along with the quark
masses [26, 27], are fitted to give a good description of the chiral condensate, Mπ/K/ηc

and fπ.
The obtained quark propagator functions agree qualitatively with lattice simulations.

The main results for the pseudoscalar and vector meson masses and leptonic decay constants
are summarized in Table 1 and illustrated in Fig. 2. Regarding the table one should note that the
rainbow-ladder truncation gives “ideal” flavor mixing and the study uses m̂u = m̂d �= m̂s �= m̂c.
Thus the first row simultaneously describes four degenerate mesons for each column, namely,
a {ud̄, uū − dd̄,dū} isotriplet and a uū + dd̄ isosinglet. The second row describes ss̄ mesons,
and the third row cc̄ mesons. For vector mesons ideal mixing is a very good approximation,
though this is not the case for the pseudoscalar ground states. However, the experimental
degeneracy of the π(1300) and η(1295) suggests [28] that ideal mixing is almost realized for the
excited pseudoscalar mesons. This supports the interpretation of the η(1295) and η(1470) as
the radial excitations of the η(548) and η′(958), with quark content almost entirely uū + dd̄ and
ss̄ respectively [27]. Figure 2 shows bound-state masses and leptonic decay constants for the
ground and excited states of pseudoscalar mesons as well as ground-state vector-meson masses
as functions of the current-quark mass. It illustrates that mπ0 vanishes in the chiral limit, while
mρ and mπ1 do not; on the other hand, fπ1 vanishes in the chiral limit, while fπ0 does not.

Satisfaction of the axial-vector WTI can be checked by virtue of Eq. (9) for any pseudoscalar
meson in Table 1. For the ground and excited states the inaccuracies are below 1% and 5%,

Table 1. Results for the qq̄ 0− ground and first radially excited states as well as qq̄ 1− ground
states. The current-quark masses are mu/d = 5.4 MeV, ms = 124 MeV, and mc = 1.34 GeV at
ζ = 1 GeV, and all quantities are given in GeV; for the leptonic decay constants we follow the
conventions of Ref. [25, 26]. Experimental data are taken from [28] except for fηc [29].

q Mπ0 Mexpt fπ0 fexpt Mπ1 Mexpt fπ1 MV Mexpt fV fexpt

u, d 0.14 0.14 0.131 0.131 1.10 1.3 -0.002 0.74 0.77 0.206 0.22
s 0.70 — 0.182 — 1.41 1.47 -0.033 1.08 1.02 0.257 0.23
c 2.98 2.98 0.33 0.34 3.45 3.65 -0.15 3.13 3.10 0.33 0.41
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Figure 2. The masses M of the pseudoscalar ground and first radially excited states (left) and
the corresponding weak decay constants (right) as functions of the current-quark mass mq. For
comparison, we also include the mass of the ground-state vector mesons.

respectively. The latter are larger because of: (1) the need to project out the ground state in
order to calculate the excited state, (2) the smallness of fπ1 close to the chiral limit, and (3) the
larger bound-state mass, leading to a larger region of analytic continuation for the quark DSE
solution in the complex p2 plane.

4. Electromagnetic form factors
Meson-meson-photon interactions can be described in generalized impulse approximation by

Iabc(P, Q, K) =
∫

d4q

(2π)4
Tr[Sa(q) Γab̄(q, q′; P )Sb(q′) Γbc̄(q′, q′′; Q)Sc(q′′) Γcā(q′′, q; K)] , (10)

where q−q′ = P , q′−q′′ = Q, q′′−q = K, and momentum conservation dictates P +Q+K = 0.
In Eq. (10), Si is the dressed quark propagator with flavor index i, and Γij̄(k, k′; P ) stands for
a generic vertex function with incoming quark flavor j and momentum k′, and outgoing quark
flavor i and momentum k. Depending on the specific process under consideration, this vertex
function could be a meson BSA or a quark-photon vertex.

The quark-photon vertex, Γµ(p+, p−; Q), with Q the photon momentum and p± the quark
momenta, is the solution of the inhomogeneous BSE

Γµ(p+, p−; Q) = Z2(ζ) γµ +
∫

d4q

(2π)4
K(p, q; Q) S(q+) Γµ(q+, q−; Q)S(q−) . (11)

Solutions of the homogeneous version of Eq. (11) define vector meson bound states at timelike
photon momenta Q2 = −M2

V. It follows that Γµ(p+, p−; Q) has poles at these locations [6] (see
also the vector-meson masses in Table 1).

4.1. Pion and kaon elastic form factors
There are two diagrams that contribute to meson electromagnetic form factors: one with the
photon coupled to the quark and one with the photon coupled to the antiquark respectively.
With photon momentum Q, and incoming and outgoing meson momenta P ∓Q/2, we can define
a form factor for each of these diagrams [6]

2 Pν Fab̄;b̄(Q
2) = Iab̄;b̄

ν (P − Q/2, Q,−(P + Q/2)) . (12)
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Figure 3. Left: The pion form factor Q2F (Q2), compared to the experimental results from
Refs. [30,31]. Right: The transition form factor Fωπγ(Q2) together with experimental data [40].

We work in the isospin symmetric limit, and thus Fπ(Q2) = Fuū;u(Q2). The K+ and K0 form
factors are given by FK+ = 2

3Fus̄;u + 1
3Fus̄;s̄ and FK0 = −1

3Fds̄;d + 1
3Fds̄;s̄, respectively.

Our result for Q2Fπ are shown in the left panel of Fig. 3. In the timelike region, and in
the spacelike region up to about Q2 = 2 GeV2, Fπ can be described very well by a monopole
with our calculated ρ-mass, mρ = 742 MeV (note that our calculated ρ-mass is slightly below
the experimental value). Above this value, our curve starts to deviate more and more from this
naive vector meson dominance (VMD) monopole. Our result is in excellent agreement with the
most recent JLab data [30]; it would be very interesting to compare with future JLab data in
the 3 to 5 GeV2 range, where we expect to see a significant deviation from the naive monopole
behavior. The pQCD prediction is significantly smaller than our results at 4 GeV2; we anticipate
that true perturbative behavior sets in somewhere between 10 and 20 GeV2 [32].

Recent lattice simulation also indicate that in the region between 0 and 2 GeV2 the pion
form factor can be represented by a VMD-like monopole [33, 34]. This VMD-like behavior of
the pion form factor in the spacelike region appears to be valid almost independent of the pion
mass, both in our calculations and in the lattice simulations, though a monopole fit results in a
VMD-mass which is slightly less than the actual vector meson mass. Current lattice simulations
are not accurate enough, nor do they extend to large enough values of Q2, to detect a significant
deviation from VMD-like behavior above 2 GeV2.

Also our results [6] for FK agree quite well with the available experimental data, as do both
the neutral and the charged kaon charge radius [35, 36], see Table 2. It should be noted here
that the K0 form factor is obtained by taking the difference of two numbers, Fds̄;d(Q2) and

Table 2. Overview of our results for the pseudoscalar-meson charge radii squared, all in fm2,
with an estimated combined numerical error of less than 0.01 fm2. Also included are our results
for the vector meson radiative decays: ΓV →Pγ in keV and g/m in GeV−1.

r2
π r2

K+ r2
K0 Γρ± g/m Γω g/m ΓK�± g/m ΓK�0 g/m

calc. 0.44 0.38 -0.085 53 0.69 479 2.07 90 0.99 130 1.19
expt. 0.44 0.34(5) -0.052(26) 68 0.74 757 2.38 50 0.84 116 1.27
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Fds̄;s̄(Q2), which are both close to one for Q2 near zero. It is therefore much more sensitive to
details of the model: both kaon loops and a flavor dependence of the (effective) quark-quark
interaction will have a significantly bigger effect on the K0 form factor than on the K+ form
factor. This could explain why it does not agree as well with experiment as our other results. In
this respect one should note that the absolute deviation between our calculated charge radius
and the experimental charge radius is similar for the charged and neutral kaon.

4.2. Radiative vector-meson decays
We can describe the radiative decay of the vector mesons using the same loop integral, Eq. (10),
this time with one vector meson BSA, one pseudoscalar BSA, and one qq̄γ-vertex [37]. The
generic structure of a vector-pseudoscalar-photon vertex is

Iab̄;a
µν (P, Q,−(P + Q)) = εµναβPαQβ fab̄;a(Q

2) , (13)

where P is the vector momentum and Q the photon momentum. The on-shell value gives us the
coupling constant, and can be used to calculate the partial decay width of the vector mesons.
For virtual photons, we can define a transition form factor FV Pγ(Q2), normalized to 1 at Q2 = 0,
which can be used in estimating meson-exchange contributions to hadronic processes [38, 39].

In the isospin limit, both the ρ0 π0 γ and ρ± π± γ vertices are given by

gρπγ

mρ
εµναβPαQβ Fρπγ(Q2) = 1

3 Iuū;u
µν (P, Q,−(P + Q)) . (14)

The ω π γ vertex is a factor of 3 larger, due to the difference in isospin factors; however, the form
factor FV Pγ(Q2) is the same for ρ π γ and ω π γ. In contrast to the elastic form factors, this
transition form factor falls off significantly faster than a VMD-like monopole, as can be seen in
the right panel of Fig. 3. Only in the timelike region, near the vector meson pole, do we see a
true VMD-like behavior.

As Eq. (14) shows, it is gV Pγ/mV that is the natural outcome of our calculations. Therefore,
it is this combination that we give in Table 2, together with the corresponding partial decay
widths [37]. As anticipated, the partial decay width ω → πγ is indeed (approximately) nine
times larger than the ω → πγ partial decay width. Note that part of the difference between
the experimental and calculated decay width comes from the phase space factor because our
calculated vector meson masses deviate up to 5% from the physical masses.

For the K�Kγ decays (and corresponding form factors) [41] the situation is more complicated
owing to the interference of the diagrams with the photon coupled to the s-quark and to the
u- or d-quark. In the SU(3) flavor limit, the charged K� K γ vertex becomes equal to the ρ π γ
vertex, whereas the neutral K� K γ vertex is twice as large in magnitude

(
gK�Kγ

mK�

)+

F+
K�Kγ(Q2) = 2

3fus̄;u(Q2) − 1
3fus̄;s̄(Q2) , (15)

(
gK�Kγ

mK�

)0

F 0
K�Kγ(Q2) = −1

3fds̄;d(Q2) − 1
3fus̄;s̄(Q2) . (16)

In Table 2 we see indeed that the partial decay width of the neutral K� → Kγ is larger than
that of the charged K� → Kγ, though not by a factor of four as it would in the SU(3) flavor
limit. Furthermore, we see that the deviation between our calculation and experiment is largest
for the charged K� → Kγ decay. Again, this can be understood since this decay is sensitive
to the difference between the impulse diagrams, and therefore more sensitive to details of the
model and its omissions.
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