
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

Implementation of the ATLAS trigger within the
multi-threaded software framework AthenaMT
To cite this article: Ben Wynne and on behalf of the ATLAS Collaboration 2017 J. Phys.: Conf. Ser.
898 032002

View the article online for updates and enhancements.

You may also like
Balancing the Resources of the High Level
Trigger Farm of the ATLAS Experiment
N Garelli, M T Morar and W Vandelli

-

Operational experience with the ALICE
High Level Trigger
Artur Szostak

-

The CMS High Level Trigger System:
Experience and Future Development
G Bauer, U Behrens, M Bowen et al.

-

This content was downloaded from IP address 3.145.77.156 on 15/05/2024 at 14:18

https://doi.org/10.1088/1742-6596/898/3/032002
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012022
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012022
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012048
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012048
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012008
https://iopscience.iop.org/article/10.1088/1742-6596/396/1/012008
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsud1s7QNZstx1rGgGa35KAOlWOLGLnrZs0DJnBZjqeawuZdI3ZLt7d231to3UAJXnaZAymhK480O_ZFyGtVdP34f6pF_WqoAIfNLBow1hf-uClgdGnjTbhjjD3n_esDvdlqEq44CTIj4HiUuORCBU4rA5kd6y--Rocqrm234jNsjulrNuCkzHe2uh4TpfD8JnUktzsu_NeRfaOi1k5x8i-n4YbNyA_o8pAjDJBmJJL6jUTNVhxm06RzsvWyeWO_zFgepRfXA3ZrkryG15k0g9paj-Ej7OqsP6Xfs5ylNTmv1ntl0R4yBjx7RTWnlzjdm8FY9u4E-pyTBM-8dp_aYpkFrpQPyU4Q&sig=Cg0ArKJSzIYyw4g_pugy&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032002 doi :10.1088/1742-6596/898/3/032002

Implementation of the ATLAS trigger within the

multi-threaded software framework AthenaMT

Ben Wynne on behalf of the ATLAS Collaboration.

James Clerk Maxwell Building, Peter Guthrie Tait Rd., Edinburgh, EH9 3FD, UK

E-mail: bwynne@cern.ch

Abstract. We present an implementation of the ATLAS High Level Trigger, HLT, that
provides parallel execution of trigger algorithms within the ATLAS multithreaded software
framework, AthenaMT. This development will enable the ATLAS HLT to meet future challenges
due to the evolution of computing hardware and upgrades of the Large Hadron Collider, LHC,
and ATLAS Detector. During the LHC data-taking period starting in 2021, luminosity will
reach up to three times the original design value. Luminosity will increase further, to up to 7.5
times the design value, in 2026 following LHC and ATLAS upgrades. This includes an upgrade
of the ATLAS trigger architecture that will result in an increase in the HLT input rate by a factor
of 4 to 10 compared to the current maximum rate of 100 kHz. The current ATLAS multiprocess
framework, AthenaMP, manages a number of processes that each execute algorithms sequentially
for different events. AthenaMT will provide a fully multi-threaded environment that will
additionally enable concurrent execution of algorithms within an event. This has the potential
to significantly reduce the memory footprint on future manycore devices. An additional benefit
of the HLT implementation within AthenaMT is that it facilitates the integration of offline
code into the HLT. The trigger must retain high rejection in the face of increasing numbers of
pileup collisions. This will be achieved by greater use of offline algorithms that are designed
to maximize the discrimination of signal from background. Therefore a unification of the HLT
and offline reconstruction software environment is required. This has been achieved while at
the same time retaining important HLT-specific optimisations that minimize the computation
performed to reach a trigger decision. Such optimizations include early event rejection and
reconstruction within restricted geometrical regions. We report on an HLT prototype in which
the need for HLT-specific components has been reduced to a minimum. Promising results have
been obtained with a prototype that includes the key elements of trigger functionality including
regional reconstruction and early event rejection. We report on the first experience of migrating
trigger selections to this new framework and present the next steps towards a full implementation
of the ATLAS trigger.

1. Introduction
Two trends are driving the development of software for the ATLAS [1] experiment at the LHC,
particularly for the ATLAS High Level Trigger (HLT). Firstly, the planned LHC upgrades will
have the instantaneous luminosity increase to 3 times the design value (of 1034 cm−2 s−1 [2]) by
2021, and 7.5 times by 2026. This implies that the HLT must handle between 4 and 10 times its
current input rate. Secondly, the evolution of computer processing hardware is broadly trending
towards more cores per device with less memory per core and little change in clock frequency. As
a result the HLT will need to utilise multi-threading with efficient memory sharing, and perform
stringent background rejection.

http://creativecommons.org/licenses/by/3.0

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032002 doi :10.1088/1742-6596/898/3/032002

2. AthenaMT
The AthenaMT framework is a new development based on the GaudiHive prototype [3] in much
the same way as Athena [4] was based on Gaudi [5]. It was developed to fulfill two major
goals [6]: to introduce multi-threading to ATLAS software at a high level, and to unify the
online and offline processing environments, facilitating code sharing. Consequently the HLT
can achieve greater background rejection by making use of the (typically) more detailed offline
reconstruction algorithms. When offline code is used in the HLT at present, a ‘wrapper’ class
must be added for compatibility, since the framework itself has been modified to support HLT
behaviour. In the future the framework will be identical for online and offline workflows, with
HLT-specific behaviour implemented using configurable algorithms. A more detailed comparison
of the old and new approaches is shown in Table 1.

Table 1. Athena vs AthenaMT feature comparison

Athena AthenaMT

Single-threaded Multi-threaded
• Algorithm sequence • Algorithm dependency graph

HLT-specific steering layer Common scheduler for HLT and offline
• Schedules algorithms
• Makes trigger decisions Trigger decisions made by algorithms

HLT-specific algorithm class Common algorithm class for HLT and offline
• Enables RoI-based reconstruction • Facilitates code-sharing

RoI data stored using EventViews (see Section 3)
• Accessed or manipulated by any algorithm
• HLT-specific information stored as event data

The crucial difference between online and offline processing for the ATLAS experiment is
the use of Regions of Interest (RoIs). These are small areas of the detector (in pseudorapidity
η, azimuthal angle φ, and beam-axis z) where the Level-1 (L1) hardware trigger system has
detected a feature for the HLT to examine. By limiting HLT processing to these areas, CPU
time and read-out bandwidth requirements are minimised for the majority of events, which will
be rejected. Accepted events also require relatively little CPU time, since the accept decision
can be made without fully reconstructing the event. The HLT-specific ‘steering’ layer in the
current framework is used to implement the processing of RoIs. In AthenaMT, RoI processing
will be achieved using a new component called EventViews.

3. EventViews
AthenaMT executes algorithms in parallel by constructing a directed, acyclic graph1 of data
dependencies, and executing all algorithms that have their input requirements satisfied. It does
this by requiring that all data objects are produced and consumed via smart pointers called
DataHandles. The scheduler can then query the DataHandles of an algorithm in order to find
its dependencies. An additional effect is to remove the need for an algorithm to request a piece

1 A graph where each edge has a direction, and where navigating the graph cannot lead to the same vertex twice.

3

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032002 doi :10.1088/1742-6596/898/3/032002

of data from somewhere in particular: it is simply the responsibility of the framework to provide
it.

This allows the re-introduction of RoI processing, by encapsulating all the data for an RoI
in a container called an EventView. The EventView interface is compatible with DataHandles,
and the framework can use an EventView to provide data to an algorithm in place of the default
EventStore object that contains all event data. So, an algorithm using DataHandles requires no
modification to perform RoI processing: it will receive the appropriate data via its handles.

EventViews are created dynamically during event processing, by HLT algorithms. The
majority of views are expected to correspond to RoIs created by the L1 trigger, and alongside the
regional data will also contain an object that describes the RoI itself. There are other potential
use-cases — reflected in the existing HLT — where multiple RoIs from L1 might be merged
together, for example to reconstruct a B-meson or W/Z-boson. Again, such an EventView will
contain a descriptive object as well as the relevant physics data.

EventViews and the algorithms that create them will replace one of the key features of the
current HLT-specific framework layer: associating algorithms with RoIs. The other feature
needed is the ability to make trigger decisions.

4. Trigger decisions and the menu
When processing an RoI, physics objects are reconstructed by Feature EXtraction (FEX)
algorithms, and then selections made on the reconstructed objects by HYPOthesis (HYPO)
algorithms. The final result of processing an RoI is a set of booleans representing whether
different hypotheses have passed or failed. For example, a FEX algorithm might attempt to
reconstruct a jet in an RoI produced by the ATLAS hadronic calorimeter, and the result might
then be compared to the hypothesis “this RoI contains a jet with pT > 20GeV.” Once all
existing RoIs have been processed, and various hypotheses evaluated, the results are compared
with the trigger ‘menu’ — a list of possible criteria for accepting an event. If one or more menu
criteria are satified, additional reconstruction of the event might be scheduled or the event might
be accepted and stored for offline analysis. The majority of events will not satisfy any menu
criteria, and so will be rejected: discarded with no further data processing.

The HLT steering is currently responsible for making trigger decisions based on the menu.
In AthenaMT this task will instead be performed by multiple decision-making algorithms, that
will each be responsible for a part of the menu. A decision algorithm will take as input all the
merged HYPO results from the EventViews that have been created. If the event is not rejected
(or accepted for offline analysis) the decision algorithm may be followed by further rounds of
view creation and decision-making, as defined by the menu.

Using the objects described above, the design for the ATLAS HLT is as follows. Menu
algorithms run in the context of an entire event, creating EventViews, collecting results from
them, and using these results to make trigger decisions. Within the event views, unmodified
offline algorithms can run as FEX algorithms to reconstruct physics objects, which are then
compared to trigger selection criteria by HYPO algorithms. Multiple stages of view creation
and trigger decision-making are possible, although a decision to reject the event will interrupt
this process. A simplified example workflow is depicted in Figure 1.

5. Summary
The ATLAS collaboration is adopting a new, multi-threaded framework — AthenaMT —
in response to the evolution of computing hardware towards greater parallelism. This
framework also aims to provide a common environment for online and offline processing,
allowing the ATLAS HLT to make greater use of high-precision offline reconstruction algorithms.
However, the HLT presently relies on a customised framework layer to implement RoI-based
reconstruction, which minimises processing and readout requirements for rejected events.

4

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 032002 doi :10.1088/1742-6596/898/3/032002

M
en

u

D
et
ec

to
r

re
ad

ou
t

M
en

u

FE
X

H
YP

O

M
en

u

Ro
I

cr
ea

ti
on

FE
X

H
YP

O

EventStore EventView 2EventView 1

Figure 1. Simplified block-diagram showing the proposed interaction between HLT algorithms
and EventViews. Once L1 information is read out, algorithms running on the entire event
will create and consume EventViews in order to make trigger decisions based on the menu.
Within each EventView, FEX algorithms reconstruct physics objects and HYPO algorithms
create elements of the trigger decision.

This report gives a brief overview of how the HLT will be re-implemented in AthenaMT, with
new algorithms to manage RoI-based reconstruction. Subsets of event data corresponding to an
RoI can be passed to reconstruction algorithms using the DataHandle interface, which allows
algorithms to process data without knowledge of its source. The EventView component will be
used to contain this data, and EventViews will be created during event processing in response to
RoIs read out from the L1 trigger, or more complex reconstruction tasks requiring the merging
of RoIs.

EventViews will be created in groups by algorithms that populate them with data, then collect
the outputs of the algorithms that run within the view. In particular, the combined results of
all the hypothesis algorithms within EventViews will be used to make a trigger decision based
on the menu. The result of this decision might be to store the event for offline processing, to
reject it entirely, or to perform additional processing with another round of view creation and
consumption.

Prototypes of all of these components have been developed, and are being assembled into a
complete workflow demonstrator. Additional code will be migrated over the coming years, with
the aim of having the full ATLAS HLT running in AthenaMT by the start of LHC Run 3.

References
[1] ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron Collider JINST 3 S08003
[2] Bryant P, Evans L 2008 LHC Machine JINST 3 S08001
[3] Hegner B, Mato P, Piparo D 2012 Evolving LHC Data Processing Frameworks for Efficient Exploitation of

New CPU Architectures Proc. IEEE-NSS (Anaheim)
[4] Calafiura P, Lavrijsen W, Leggett C, Marino M, Quarrie D 2005 The athena control framework in production,

new developments and lessons learned Proc. CHEP (Interlaken) pp 456–458
[5] Barrand G et. al. 2000 GAUDI - A software architecture and framework for building LHCb data processing

applications Proc. CHEP (Padova)
[6] ATLAS Collaboration 2016 ATLAS Future Framework Requirements Group Report CERN Document Server

ATLAS-SOFT-PUB-2016-001

