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Abstract. In practice, collected data usually are incomplete and contains missing value. 

Existing approaches in managing missing values overlook the importance of trustworthy data 

values in replacing missing values. In view that trusted completed data is very important in 

data analysis, we proposed a framework of missing value replacement using trustworthy data 

values from web data sources. The proposed framework adopted ontology to map data values 

from web data sources to the incomplete dataset. As data from web is conflicting with each 

other, we proposed a trust score measurement based on data accuracy and data reliability. Trust 

score is then used to select trustworthy data values from web data sources for missing values 

replacement. We successfully implemented the proposed framework using financial dataset 

and presented the findings in this paper. From our experiment, we manage to show that 

replacing missing values with trustworthy data values is important especially in a case of 

conflicting data to solve missing values problem. 

1.  Introduction 

Data is a very important substance in making analysis. However, collected data is usually incomplete 

and contains missing values. In practice, missing values can happen due to several reasons such as 

human errors, equipment malfunction, manual data entry process and incorrect measurement [1,2]. As 

missing values is a common problem in collected data, adopting suitable approach in managing 

missing values is crucial to minimize bias in the resulted analysis [3].  

In data quality research, the occurrence or absence of missing values in which data records has the 

undesirable null values determined the completeness of data [4–6]. Due to this definition, we can 

consider that data is complete when all necessary values pertaining to the data exist and contained no 

missing values [7–9]. The emergence of research in managing missing values problem proposed 

various approaches to impute missing values. Most of the approach introduced a new value to replace 

missing value and further, make the data complete. A common example is to replace missing values 

with the observed mean. More robust statistical methods such as regression analysis have also been 

used to impute missing values efficiently. 

Introduction of new values after missing values imputation using statistical methods brought 

several problems such as data duplication, data outliers and data distortion if it is not done by the 

http://creativecommons.org/licenses/by/3.0
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statistical expert [10,11]. Consequently, the resulted analysis of the imputed data is deteriorate. The 

other way to find suitable values to replace missing values is to look for the data values that described 

about the same data in the other data sources such as web. However, as the missing values being 

replaced with data values from web, question on the level of trust that we have towards the data value 

retrieved from web need to be address. Obviously, replacing missing values with data values from 

other data source without knowing how much we can trust that data values risk the resulted analysis 

and worst, lead to a wrong decision. 

Web contained large collection of potential data candidates to replace missing values. For example, 

in financial domain, web data from Yahoo! Financial and Google Finance can be used to replace 

missing values in financial statements dataset. However, heterogeneity in web data sources poses 

challenges to integrate and use web data to replace missing values. Furthermore, various schemas is 

used to define data in web. Thus, problems such as conceptual inaccuracies and terminological 

ambiguity is inevitable [12]. Ontology is used in [12] to solve the problems mentioned before.  

In web, values of the same data from various web data sources can be different and conflicting with 

each other [13]. Replacing missing values with data value from web raised concern about the level of 

trust that we have towards the web data. Essentially, the selection of trustworthy web data to replace 

missing values derived a trusted completed dataset [6,14]. Moreover, by knowing the trust level of the 

selected data, users have more confident in the analysis result. The question of trust as mention before 

motivates us in doing this research.   

Any replacement of missing values with data values from web required the calculation of trust 

score beforehand. Data candidate with highest trust score is then use to replace missing values. In this 

paper, we proposed a framework to manage missing values by replacing it with a trustworthy data 

values from web data sources. Therefore, we also introduced a trust measure to calculate trust score of 

each data candidates. The proposed trust measure is based on the available observed data in the 

dataset. In this paper, we use data candidate as a term that refer to the data values from web data 

sources and has potential to replace missing values.   

This paper is structured as follows: in Section 2, we review related works in missing values 

mechanism, missing values imputation, ontology adoption in data quality, data accuracy and data 

reliability in measuring trust. In Section 3, we proposed a framework to manage missing values by 

replacing it with a trustworthy data values from web data sources. Then, we show illustrative example 

of the proposed framework in Section 4 and we conclude our findings in Section 5.  

2.  Related Works 

2.1.  Missing values mechanism 

Missing values occurrence can be categorized into three categories, which are Missing Completely at 

Random (MCAR), Missing at Random (MAR) and Missing Not at Random (MNAR) [15]. Missing 

values are considered as MCAR when its’ occurrence is independent to any other observed values or 

the data of interest itself. For example, if the interviewer only asked 60 percent of the questions 

randomly, then 40 percent of data resulted from the interview is missing. As the missing values 

occurred in random and not dependent to any observed value, 40 percent of missing values from the 

interview session can be consider as MCAR. Any imputation methods used to impute missing values 

with MCAR type will not lead to bias during the analysis [2]. However, the assumption of MCAR 

should be done with cautious as MCAR type is rarely occur in the dataset. For this reason, Little 

MCAR test [16] should be conducted in order to confirm the assumption. 

On the contrary, missing values is considered as MAR if the occurrence of missing values is 

dependable to the other observed values but not to the missing value itself. Additionally, Acock [17] 

explained that missing values can be explain by other observed  values in the case of MAR since the 

missing value is dependent to other observed values which are not missing. As an example, during the 

interview, students with age 15 to 17 years old tend not to answer the question of smoking status. This 

lead to the assumption that chances of missing values in smoking status of the student with age 15 to 
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17 years old is higher compared to the students with younger age. The resulted missing values from 

the interview can be consider as MAR since the missing value in smoking status is related to the 

observed variable, students’ age. In MAR, missing values can be imputed by using the values of other 

observed values [3]. 

MNAR occurs when the possibility of missing values in the dataset is related to the unobserved 

values. Due to this, missing values in MNAR cannot be imputed by using other observed values [3]. 

Therefore, advance statistical knowledge is important in order to analyze data with MNAR  [18]. In 

summary, it is important to make a clear distinction between MCAR, MAR and MNAR occurrence in 

the dataset as it will determined the best approach to deal with missing values.  

2.2.  Approaches in missing values imputation 

Previous research in improving data completeness proposed various approaches to deal and to impute 

missing values. The most common approach is list-wise deletion by omitting instances with missing 

values from the analysis which then reduced size of instances. The list-wise deletion is simple. Yet, as 

the sample size decrease, the statistical power of the analysis will drop as well which then arise 

difficulties to detect small effect or relationship between variables [18]. It became worst in a case of 

MCAR data type, as it increase the standard errors and decrease the level of significance due to a 

smaller sample size [17]. Conversely, pair-wise deletion gives more statistical power without threaten 

the sample size. In pair-wise deletion, data with missing values is not included in the analysis, but the 

case will not be omit as it is used to analyze other observed data with non-missing values.  Either list-

wise or pair-wise deletion, the execution of the deletion approach is highly suggested only in MCAR 

and in some MAR cases where missing values only comprises of a small part of data [17, 19, 20].   

Another approach to deal with missing values is to replace missing values with the value of 

observed mean [21]. In this approach, the mean value of the observed variables in dataset is computed 

and used to replace missing values. This approach is easy to use and more assertive compared to the 

deletion approach as it estimates the missing values based on the non-missing values without reducing 

the sample size and disturbing the mean variable of dataset [18]. However, using constant mean value 

to replace missing values in dataset distort the statistical distribution of data and will further risk the 

result of data analysis [22]. Besides, using the constant value of mean to replace missing values altered 

the randomness of data. Escaping the data randomness led to invalid statistical inference [18, 23]. 

In contrast to the abovementioned methods, Batista and Monard [24] proposed an approach based 

on the KNN algorithm to impute missing values. In order to find the nearest neighbor, several distance 

function such as Euclidean, Manhattan and Pearson is used. KNN suggested a set of k-nearest 

neighbor of the missing value which then being used to replace the missing value. Thus, the optimal 

value of k is important to ensure high imputation performance. Selection of the replacement 

techniques to replace missing values is depending on the type of data being analyzed. The most 

common techniques are mean estimation, median, mode and weighted average of the values [25]. As 

opposed to the mean imputation method, KNN can be used to predict missing values in both 

qualitative and quantitative data type [26]. However, finding the most similar instances in a large 

dataset is a time consuming process as the approach will search throughout the dataset [24].  

Another approach to impute missing values is the MissForest method and it is found to be more 

robust compared to KNN [27,28] and mean imputation [28,29]. MissForest method imputes missing 

values based on the random forest algorithm which been trained on the non-missing values of the 

dataset [27]. Missing values imputation in MissForest is done in a repeated iteration which started by 

initial guess of the missing value, X by using mean imputation or other imputation methods. A random 

forest model is then created for each value of X to impute the missing value. The iteration is then 

stopped after the stopping criteria is met. Stopping criteria is met when a large differences between 

previous and the new imputed data matrix occur. The performances of MissForest is assessed by the 

Normalize Root Mean Squared Error (NRMSE) and Proportion of Falsely Classified Entries (PFC) for 

categorical variable which scaled from 0 to 1. Value of NRMSE and PFC that closest to 0 shows a 

good performance of MissForest. The ability of MissForest to handle any type of  data with small 
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tuning and produced  better imputation result were the main advantage of this approach compared to 

others [28].  

Further advancement in computing has resulted new approaches in improving data completeness 

and missing values including constraint based method [30] and replacing missing values with data 

from online data sources [12]. Prediction model for asset valuation has been used in [12] to evaluate 

the proposed framework. Various imputation approaches such as mean of available observation, 

ignore missing values and fuzzy concept is used to impute the dataset and later, being compared with 

the proposed framework in the evaluation. The result proved that replacing missing values with data 

from online data sources produced higher accuracy in the prediction model compared to other 

imputation approaches.  

2.3.  Ontology adoption in data quality 

Data from various web data sources were usually found conflicting with each other [13]. The most 

common example is the difference of terms used to describe about the same data. Moreover, 

conflicting data from various web data sources can be resulted from the lack of precision in concept 

definitions. Du and Zhou [12] described both problems as terminological ambiguity and conceptual 

inaccuracy. Ontology adoption is important to solve both problems and to provide inference before 

data from web data sources is use to replace missing values.   

Ontology has been used in previous research to solve data quality and data completeness problem. 

Several reasons strengthen the needs to adopt ontology in data quality such as the ability to embed 

domain knowledge and user’s data quality requirement [31]. Data quality requirements explained how 

the assessment will be carried out including details about data quality metrics and the assessment 

method in used. Furthermore, the adoption of ontology in data quality management reduces extensive 

involvement of domain expert and data users during data quality assessment and improvement 

process. Additionally, previous researchers adopted ontology in data quality assessment because its 

ability to infer and to represent data from heterogeneous data source or data schema [12, 14], [31–35]. 

The adoption of ontology also allowed data quality assessment of large data to be conducted without 

expert involvement [12, 30], [32–34].  

Ontology is an explicit specifications of concepts and it showed the relationship among concepts 

and their attributes in a specific domain [36]. In ontology, class is used to explain concepts in the 

interested domain. Each classes contained instances that specifically described the object. For 

example, a class of cars represents all cars and specific car model is the instances. Ontology can be 

built manually, semi-automated or fully automated. However, the process involved in building the 

ontology itself is complicated and time consuming. Thus, existing ontology that described interested 

domain can be used to safe time. In some cases, small modification or mapping of existing ontology is 

needed to suit the needs.  

2.4.  Measuring trust: data accuracy and data reliability 

Dimensions of data accuracy and data reliability can be categorized into two perspective of trust which 

are: trust of data value and trust of data source. Trust of data value explained the dimensions that are 

important in measuring trust of the data value itself. The later described the measurement of trust in 

the data source that the value being retrieved. In this paper, focus is given on data accuracy and data 

reliability dimensions to measure trust score as our literature review suggested that data accuracy and 

data reliability is important in measuring trust and has been discussed in most research articles that 

emphasis trust [6, 32], [37–40].    

Data accuracy is defined as the closeness of data value to the real world or the value of reference 

[41, 42]. However, in most cases it is difficult for us to know the value of data in real world. Thus, 

research in data quality categorized data accuracy into two categories which are: syntactic and 

semantic accuracy [6, 40]. In syntactic accuracy, the real value in real world data is not important in 

measuring accuracy. However, the semantic accuracy measures the closeness of data value to its real 

value. We can relate syntactic accuracy to the definition of accuracy by Redman [43] that data 
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accuracy measure the proximity of data value from the value of reference that is considered correct. 

Data accuracy can be measure using distance function [6] where the closest distance between data 

value, v and value of reference v’ reflected high data accuracy. In determining the accuracy of data 

source, the ratio of number of values that accurate and the number of total data values is used [40]. 

Data accuracy is related to the reliability of data source. If the data value is accurate, data accuracy 

is equal to 1 and its’ data source is considered as highly reliable [39].  Thus, data source with lowest 

data accuracy rate, has low data reliability score. From data source perspective, data reliability is 

defined as the ability of data source to provide rightful data [6]. Instead, data reliability from data 

value perspective can be define as a measure of data ability to be trusted and conveys right 

information [6, 44]. Obviously, both definitions relate data reliability with trust and rightful data. 

Reliability can be measure using several approaches such as Cronbach alpha and composite 

reliability score [37], trust measure [38] and truth discovery [39]. In discovering truth and determining 

data reliability, data which claimed by majority of data sources is considered as truthful data  [39]. 

However, the proposed approach does not distinguish the reliability of data sources that claimed the 

same data value. It is important to expose the reliability of data sources as the majority claim can be 

wrong especially in the event that data being shared among data sources. Li et. al [39] measure source 

reliability and the confidence interval of the invariance to discover truth.  

3.  Framework of Missing Values Replacement Using Trustworthy Data Values from Web Data 

Sources 

In this paper, we are interested in finding trustworthy data values from web data sources to replace 

missing values in dataset. We propose a framework to manage missing values by replacing it with a 

trustworthy data values from web data sources. Hence, we illustrated the proposed framework in 

figure 1.  

The web contained a lot of data related to the domain of interest. For instance, in financial domain, 

Yahoo! Finance and Google Financial stored companies’ financial data such as the income statement, 

balance sheet and share prices. However, making used of these data to replace missing values required 

the adoption of ontology to map the data from web data sources to the original dataset. 

 

 
 

Figure 1. A framework to replace missing values with a trustworthy data values from web data 

sources. 

For example, if a value of sales from company A is found missing, the ontology is then used to 

map related data from the web to the original dataset. In some cases, the term sales is not used to 
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represent data about sales. Instead, revenue is used to represent sales data. Conflicting terminology in 

web data sources is the example of terminological ambiguity [12]. The ontology is also use to infer 

data from web data sources and suggested suitable data candidates to replace missing values.  As 

shown in figure 1, for each missing values found in the original data, the ontology is used to infer data 

from web data source 1 (WD1) and web data source 2 (WD2). Trust score is then calculated for data 

candidates from each web data sources. Data candidate with highest trust score is then selected to 

replace the missing values. If there is no values being retrieved from WD1 and WD2, then the missing 

values will be impute using MissForest [27]. The details of how to calculate the trust score is 

explained in the next section. 

3.1.  Trust score calculation 

Data values retrieved from web data sources is usually conflicting with each other [13]. Importantly, 

only one data value is required to replace the missing value in the dataset at one time. It is impossible 

for us to know what are the real value that missing. Therefore, in order to select which data values 

should be used to replace missing value, we calculated the trust score. We define the following 

measure to calculate the trust score. 

Assume that we have a financial dataset of twenty rows and four column. Each rows described 

financial data of the company (entity) and each column is the related variables. The dataset has five 

missing values. We retrieved data candidate from web data source (i) to replace missing value (x,j) in 

the dataset. The calculation of trust score for data candidate from web data source (i) is defined as: 

  

      
)(

)()(100 iRelwd
variableiwdiwd DRelAcc          (1) 

 

Where, 

Accwd(i) = Accuracy score of data value from web data source (i) 

Relwd(i) = Reliability score of data value from web data source (i) 

Dvariable = Average distance between 3 available variable in web data source (i) and the 

corresponding variables in original data 

 

The calculation of trust score relied on the accuracy and reliability score of data candidate from 

web data source (i). As trust score measure the trustworthy of data candidates from web data source 

(i), high accuracy and reliability score of data candidate resulted high trust score. Dvariable calculated 

the average distance between data values of three available variables in web data source (i) and its 

corresponding variables in original dataset. Importantly, these three available data values belongs to 

the same entity that have the missing value. Thus, high discrepancies between values resulted high 

Dvariable values. We defined Dvariable measure as: 

 

                         
     

2
1

3

)()()()()()(
222













  oriCiCoriBiBoriAiA
            (2) 

 

Where,  

A(i), B(i), C(i) = Variable A, B, C from Source (j) which belongs to  the same entity that have the 

missing value (x,j) 

A(ori), B(ori), C(ori) = Variable A, B, C from original data which belongs to the same entity that 

have the missing value (x,j) 

 

We explain the calculation of accuracy score, reliability score in the following subsection.  
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3.1.1.  Calculation of accuracy score. The calculation of accuracy score is based on the similarity 

between values from three nearest variables in the original dataset and the values of corresponding 

variables retrieved from web data source (i). The value A from web data source (i) is considered as 

accurate if it similar with the corresponding value in the original data. Thus,  

                    Aweb data source (i) - Aoriginal = 0                           (3) 

The following measure defined how we calculate the accuracy score. 

Assume that we want to replace a missing value Original(x,j) in our original dataset. The dataset 

comprises of twenty companies (entity) and four columns (variables). The nearest available variables 

to the missing value in the original dataset is A(x,k), B(x,l) and C(x,m). We retrieved data values of 

variables A, B and C from web data source (i) to measure the accuracy of its data values.  The 

calculation of accuracy score is defined as:  

                  

3/
|)(||)(||)(|

 









n

iC

n

iB

n

iA

          (4) 

Where,  

|A(i)|, |B(i)|, |C(i)| = Number of entity from Variable A, B, C of Source (j) which the similarity is 0 

n = Number of entity in dataset 

 

3.1.2.  Calculation of reliability score. A particular web data source is considered unreliable if it has 

too many data values that is different from the available observed data in the original dataset. In such 

cases, the variance of the error distribution in the particular web data source is big [39]. In this paper, a 

data that is retrieved from a web data source that has lower reliability score is considered as less 

reliable compared to the data from a web data source with higher reliability score.  

Assume that we want to replace a missing value Original(x,j) in our original dataset. The dataset 

comprises of twenty companies (entity) and four columns (variables). The nearest available variables 

to the missing value in the original dataset is A(x,k), B(x,l) and C(x,m). We retrieved data values of 

variables A, B and C from web data source (i) to measure the reliability of its data values. The 

calculation of reliability score is defined as:  

 

      

      























Nin

oriCiCoriBiBoriAiA

x

2
)()(

2
)()(

2
)()(

2

/1

          (5) 

 

Where,  

x2 = Chi-square (0.025, df=20) 

n = entity n 

Ni = Set of entity provided in web data source (i) 

A(i), B(i), C(i) = Variable A, B, C from web data source (i) 

A(ori), B(ori), C(ori) = Variable A, B, C from original dataset 

4.  Illustrative Example 

We present the example of our proposed framework using financial dataset obtained from Standard & 

Poor’s Compustat North America dataset.  The data were extracted for the first quarter 2009. The 

dataset comprises of twenty companies randomly selected with four variables which are: selling, sales, 
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net income and gross profit. Data values in each variables explained total in million dollars for the 

respective company in the first quarter of 2009. Among the selected variables, sales, net income and 

gross profit has no missing values. Whereas, five companies has missing values in the selling variable.  

We build the ontology in Protégé 4.3 which used to map data values from the web data sources to 

the data values in the original dataset. All the measurement discussed before is coded in R 

environment. In this example, two financial website is used to retrieve candidates to replace missing 

data. It is noted from table 1 that the retrieved data from both financial website exhibited conflicting 

values in selling variable. Thus, it justified the needs to measure the trust score before any replacement 

of missing values being made.  

Table 1. Conflicting values in selling variables. 

Company Original dataset Financial website 1 Financial website 2 

ABT Missing 2230 2225 

NBR Missing 69.28 69.30 

ADSK Missing 283.4 47.1 

BHI Missing 283 283 

BAX Missing 788 788 

 

The resulted study showed that all data values retrieved from financial website 1 is given highest 

trust score compared to data values from financial website 2. It is shown in table 2 that the accuracy 

score and Dvariable in data values from both financial websites is not much different, but as the 

reliability score between both financial website has a wide gap, we can see a large different between 

their trust score. 

Table 2. Resulted trust score for each missing values. 

Company 

Average 

Distance 
Reliability Accuracy Trust Score 

FW 2 FW 1 FW 2 FW 1 FW 2 FW 1 FW 2 FW 1 

ABT 0.49 0.50 0.25 0.74 0.30 0.27 6.32 12.05 

NBR 0.50 0.49 0.25 0.74 0.30 0.27 6.23 12.03 

ADSK 0.50 0.50 0.25 0.74 0.30 0.27 6.33 12.03 

BHI 0.39 0.60 0.25 0.74 0.30 0.27 5.95 13.94 

BAX 0.49 0.50 0.25 0.74 0.30 0.27 6.32 12.09 

 

In comparisons to the original data, financial website 1 has a total of sixteen similar data values and 

total errors of 8735.23 in sales, net income and gross profit. In order to calculate the total errors, we 

measured the discrepancies between each data values of sales, net income and gross profit from web 

data source and the original data. On the other hand, a total of eighteen data values from financial 

website 2 has been identified as similar to the original data, but higher total errors of 11279.33 is 

recorded. As shown in table 2, the accuracy of data values retrieved from financial website 2 is higher 

than financial website 1. The high number of similar data values retrieved from financial website 2 

compared to financial website 1 explained the findings. However, the reliability score of data values 

from financial website 2 is much lower as higher total errors is recorded in data values retrieved from 

financial website 2. 
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We ranked the trust score of each data values retrieved from financial website 1 and financial 

website 2 in table 3. Based on the ranking, we then selected data values with highest trust score to 

replace missing values in the original dataset. In this example, all the missing values have been replace 

with data values retrieved from financial website 1.  

Table 3. Ranking of data values from web data source according to trust score. 

 Ranking Selected 

data value First Second 

Missing value 1 financial website 1 financial website 2 2230 

Missing value 2 financial website 1 financial website 2 69.28 

Missing value 3 financial website 1 

 

financial website 2 283.4 

Missing value 4 financial website 1 financial website 2 283 

Missing value 5 financial website 1 financial website 2 788 

5.  Conclusion 

In this paper, we propose a framework to manage missing values by replacing it with a trustworthy 

data values from web data sources. The framework address the problem of replacing missing values 

with conflicting values from web data sources by providing trust score measurement before any 

replacement being made. Furthermore, the trust score provided in this framework facilitate user to gain 

confidence in using the completed dataset for data analysis.  

The proposed framework is our initial work towards trusted missing values management approach.  

Way forward, evaluation of the proposed approach should be carry out by analyzing the usability of 

the proposed approach in MCAR, MAR and MNAR mechanism. In view that reliability and accuracy 

played important role in determining the trust score, further study can be done to analyze any 

correlation between reliability, accuracy and trust score.  
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