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Abstract. The stability of unsteady boundary layer flow and heat transfer over stretching/ 
shrinking sheet immersed in Copper-water nanofluid is studied with the presence of partial 
slip, Soret and Dufour effects. Tiwari and Das model is considered to solve the nanofluid 
boundary layer problem. The system of partial differential equations is transformed to ordinary 
differential equations using similarity transformation and was solved using bvp4c program in 
Matlab software to obtain the numerical solutions. The results were displayed graphically and 
the figures revealed that the dual solutions with the presence of partial slip, Soret and Dufour 
effects were exist for a certain range of stretching/shrinking parameter. Finally, the stability 
analysis is applied in order to determine the stability of the solution. 

1.  Introduction 
Recently, the classical no-slip assumption has been replaced by velocity slip effect since that particular 
assumption is not consistent with all characteristics physically (Bhattacharyya et al.[1]). 
Mukhopadhyay [2] stated that the presence of velocity slip that proportional to local shear stress  may 
exist when the fluid is particulate for instance emulsion, suspensions, foams and polymer solutions. 
Besides, the consideration of slip in the problem has important applications in various fields such as in 
medical Mukhopadhyay [2], polymer melts Khan et al.[3] and some other fields. There were some 
studies that included slip effect in boundary layer flow have been made by some researchers for 
example Ullah et al.[4] which investigated the slip condition on MHD flow, Pandey  et al.[5] 
considered the stretching cylinder in Copper-water nanofluid, Aurangzaib et al.[6] studied the 
unsteady MHD mixed convection with stagnation point in micropolar fluid and etc. Soret effect is a 
term which represents the mass flux caused by temperature gradient while Dufour effect denotes the 
heat flux the heat and mass flux due to concentration gradient. According to Omowaye et al.[7], both 
effects became important in areas such as petrology, geology, hydrology and etc. when there is density 
gradient due to the presence of particles in the boundary layer flow. Thus, some authors have 
considered both effects in their work in various situations for example over different surface as 
investigated by Moorthy et al.[8], Alam and Samad [9] and Animasaun et al.[10] where the findings 
show that the flow is influenced by Soret and Dufour effects. Merkin [11] in his work has proposed 
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the stability analysis when there is more than one solutions obtained. He found that the first solution 
was stable and reliable while the second solution was not. Following Merkin [11], some other authors 
such as Weidman et al.[12], Roşca and Pop [13], Najib et al.[14] and Bachok  et al.[15] have 
performed the analysis of stability in their paper and concluded the same finding.  

This study is an extension of Bachok et al.[16]  with Soret and Dufour effects as proposed by Alam 
and Rahman [17].The main purpose of this present work is to investigate the characteristics of 
boundary layer flow, heat and mass transfers over a stretching/ shrinking sheet in nanofluid when the 
Soret and Dufour effects are taken into consideration for unsteady problem. The governing equations 
are transformed to ordinary differential equations using dimensionless similarity transformation 
parameter and are solved numerically by Matlab. The stability analysis is performed using bvp4c 
program in order to determine the stability of the numerical solutions. 

2.  Problem formulation 
Unsteady boundary layer flow over a stretching/ shrinking surface immersed in Copper-water 
nanofluid is solved using Tiwari and Das model. Assume that at  0t < , the surface is in stationary state 
with velocity 0wu = . As 0t > , the surface begin to stretch or shrink where the velocity with slip is 

/ /wu Ax t L u y= + ∂ ∂  which 0A >  is dimensionless acceleration parameter. wv  represents velocity 
of mass flux where 0wv >  is for injection and 0wv <  is for suction. Let the uniform temperature and 
concentration at the surface of the plate are   and w wT C . T∞  and C∞  are the temperature  and the 
concentration of the ambient fluid. Following the assumptions above, the governing equations of the 
problem are, see Bachok et al.[16]  and Alam and Rahman [17]; 
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subject to boundary conditions  
,0,  0,  0,     for all  and ,t v u T T C C x y∞ ∞< = = = =          

,0,  ,  ( ) / / ,          at 0,   w w w wt v v u u x Ax t L u y T T C C yε≥ = = = + ∂ ∂ = = =                       (6) 

,0,             as  ,  u T T C C y∞ ∞→ → → →∞  
where x and y  are the Cartesian coordinate along and perpendicular to the plate. u  and v  are the 
velocity component in x  and y  directions, T is the temperature of the nanofluid, C  is the 
concentration of the nanofluid, L  is the length of the slip, p  is the fluid pressure, mD  is the 
coefficient of mass diffusivity, pc  is the specific heat at constant pressure, mT  is the mean fluid 

temperature, Tk  is the thermal diffusion ratio, sc  is the concentration susceptibility, respectively. 
While nfα  is the thermal diffusivity of the nanofluid, nfµ  is the viscosity of the nanofluid, nfρ  is the 
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density of the nanofluid which can be referred in Oztop and Abu Nada [18]. The similarity solution of 
equations (1) – (5) subjected to boundary condition (6) in the following form; 

            
1/2

1/2( / ) ( ),  ( ) , ( ) , ,
( )w w

T T C C yA x t f
T T C C t

ψ ν η θ η φ η η
ν

∞ ∞

∞ ∞

− −
= = = =

− −
       (7) 

where η  is the dimensionless similarity variable, primes denote differentiation with respect toη , ψ  is 
the stream function which defines ( )/ / '( ) u y Ax t fψ η= ∂ ∂ = and 1/2/ ( / ) ( )v x A t fψ ν η= −∂ ∂ = − .

( ),  ( ) and ( )f η θ η φ η  are dimensionless stream, temperature and concentration functions of the fluid 
in the boundary layer, respectively. wv  is represented as 1/2( / )wv A t sν= − , where is s  the constant 
mass flux which 0s >  for suction and 0s < for injection. In order to make the equations look simpler, 

we let ( ) ( )( ) ( ) ( )( )2.51 / 1 1 / and / 1 /s f nf f p ps f
B C k k c cϕ ϕ ϕ ρ ρ ϕ ϕ ρ ρ = − − + = − + 

 
, thus 

( ) ( )2/ 2 '  0Bf f f A f ffη′′′ ′′ ′ ′′+ + − − =                                    (8) 

( ) ( )1 / Pr / 2 ' 0C Af Duθ η θ φ′′ ′′ + + + =                                       (9) 

     
( )/ 2 ' 0Sc Af ScSrφ η φ θ′′ ′′ + + + = 

                                 
     (10) 

subject to boundary conditions 
 (0) ,  '(0) (0),  (0) 1,  (0) 1, '( ) 0,  ( ) 0,  ( ) 0.f s f f fε σ θ φ θ φ′′= = + = = ∞ → ∞ → ∞ →          (11) 

Primes denote differentiation with respect to η , /L vtσ =  is velocity slip parameter, Sc  is Schmidt 
number, Df  is Dufour number and Sr  is the Soret number which can defined as 

( )
( )

( )
( )
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 (12) 

The skin friction coefficient, local Nusselt number and the local Sherwood number are the quantities 
of physical interest in this problem and defined as

 
2 , , ,
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where  and  w wqτ are the shear stress, heat flux  and mass flux, respectively as given   
( ) ( ) ( )0 0 0/  , /  , / ,w nf w m my y yu y q k T y q D C yτ µ

= = =
= ∂ ∂ = − ∂ ∂ = − ∂ ∂        (14) 

where µ is the dynamic viscosity of the fluid and k  is the thermal conductivity of the nanofluid. Using 
equations (7), (13) and (14), we obtained  

( )
1/2 1/2 1/2

2.5 1/2 1/21/2
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1
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f x x x x x

f
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θ φ

φ
− −′′ ′

= = − = −
−

             (15) 

where Re /x wu x v=  represents local Reynold number. 

3.  Stability analysis 
The stability analysis is performed to investigate the stability of solutions since dual solutions are 
obtained. Weidman et al.[12] and Roşca and Pop [13] have shown that the first solution is stable while 
the second solution is not. This analysis is tested by considering  equations (1) - (5) and new 
dimensionless time variable 0 ln( / )t tτ = is introduced where 0t is a characteristic time (take 0 1t = ) 
andτ  is associated with an initial value problem and is consistent with the question of which solution 
will be obtained in practice (physically realizable).  
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Thus, equations (1) - (5) can be written as 
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To determine the stability of the solution 0 0( ),   ( )f f η θ θ η= =  and 0 ( ),φ φ η=  satisfying the 
boundary-value problem (8) -(11), we write (see Roşca and Pop [13] ) 

        0 0 0 0 0 0( , ) ( ) ( ), ( , ) ( ) ( ),  ( , ) ( ) ( ),f f e F e G e Hγ τ γ τ γ τη τ η η θ η τ θ η η φ η τ φ η η− − −= + = + = +     (21) 
where  γ is an unknown eigenvalue parameter, and 0 ( )F η , 0 ( )G η  and 0 ( )H η  are small relative to 

0 0( ),   ( )f η θ η and 0 ( )φ η . Substituting (21) into equations (17) - (19), and take 0τ = , thus 
( )0 0 0 0 0 0 0''' / 2 '' (1 2 ' ) ' '' 0,BF A f F Af F A f Fη γ+ + + − + + =       (22)   

             
( ) ( )0 0 0 0 0 0 0 01 / Pr " ' ' / 2 ' " 0CG A f G A F G Du H Gθ η γ+ + + + + =

     
(23)  

             
( )0 0 0 0 0 0 0" / 2 ' ' " 0H Sc Af H A ScF ScSr G Sc Hη φ γ+ + + + + =       (24) 

subject to the boundary conditions 
       0 0 0 0 0 0 0 0(0) 0, '(0) "(0) 0, (0) 0, (0) 0, '( ) 0, ( ) 0, ( ) 0.F F F G H F G Hσ= − = = = ∞ → ∞ → ∞ →       (25) 
Solving the eigenvalue problem (22) – (24) we obtain an infinite number of eigenvalues

1 2 3γ γ γ< < < . If the smallest eigenvalue is positive the flow is stable and if the smallest eigenvalue 
is negative the flow is unstable. According to Harris et al.[19] , the range of possible eigenvalues can 
be determined by relaxing a boundary condition on 0 ( )F η , 0 ( )G η  or 0 ( ).H η For the present problem, 
the boundary condition 0 '( ) 0F η →  as η →∞  is relaxed and for a fixed value of γ , the system of 
equations (22) – (24) subject to (25) along with the new boundary condition 0 "(0) 1F =  is solved. 

4.  Results and discussion 
The themophysical properties of water and Copper can be referred from Oztop and Abu Nada [18]. 
The values of 1,A = Pr 6.2,  1s= =  and 1Sc = are fixed. The effects of partial slip on reduced skin-
friction, Nusselt number and Sherwood number coefficients are presented in Figure 1. Dual solutions 
exist when cε ε> and no solution can be obtained when cε ε< , where cε  is the critical value ofε . It is 
observed that from Figure 1(a) as the partial slip increases "(0)f  gives rise for stretching sheet 

( )0ε >  and decreases for shrinking sheet ( )0ε < . This indicates that the shear stress at the surface 
increases for 0ε > and decreases for 0ε < when the partial slip σ becomes larger. The partial slip 
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effect on the reduced Nusselt number is depicted in Figure 1(b) where it shows that '(0)θ− decelerates 
for 0ε > and accelerates for 0ε < as the partial slip increases. This means that when σ  increases, the 
heat transfer rate at the surface increases for 0ε < but when the sheet is stretched the heat transfer rate 
decreases. Figure 1(c) shows that for the same increasing effect the reduced Sherwood number '(0)φ−  
is found decreases when the sheet is stretched and increases when it has been shrunk. Apparently, the 
mass transfer rate at the surface increases for 0ε < and for the 0ε > the mass transfer rate depreciates.  

  
Figure 1. Variation of reduced skin friction coefficient, reduced Nusselt number and reduced 

Sherwood number with ε  for different values of σ  when 0.15Df =  , 0.4Sr = , 0.1,ϕ = and 0.1.σ =  
 

The effects of Soret and Dufour on local Nusselt and Sherwood numbers when the nanoparticle 
volume fraction ϕ  increases from 0 to 0.2 for both 0ε >  and 0ε < are shown in Figures 2 and 3, 
respectively. Figures 2(a) and 2(b) represent the increasing Soret effect on heat and mass transfer rates 
at the surface when the value Dufour is fixed to 0.15. Based on the figures, increasing Soret effect 
increases the heat transfer rate at the surface (see Figure 2(a)) but the opposite trend can be seen for 
mass transfer rate as shown in Figure 2(b). In addition, when the ϕ  increases in the fluid, the heat 
transfer rate for first solution increases as Sr Df<  and decreases when Sr Df≥ for both 0ε >  and

0ε < .  

 
Figure 2. Variation of local Nusselt number  and local Sherwood number with ϕ for different values 

of Sr when 0.15,Df = 0.1,σ =  
 

Meanwhile the heat transfer rate for second solution for 0ε >  and 0ε <  shows the decreasing 
trend. Figure 3 demonstrates the effect of increasing Dufour on both heat and mass transfers with 
various ϕ . It can be seen from Figure 3(a) and 3(b), when the effect of Dufour becomes larger, the 
heat transfer rate at the surface decreases while the mass transfer rate increases at the surface. Besides, 
Figure 3(a) illustrates that when the fluid has more nanoparticle, the heat transfer are found decreases 
except when 0Df = (without the presence of Dufour effect) the heat transfer at the surface is slightly 
increased for 0ε >  and 0ε < . Meanwhile, the increasing ϕ  from 0 to 0.2 increases the mass transfer 
rate at the surface as illustrated in Figure 3(b).  

and =0.1 (stretching)/ -0.1 (shrinking).ε
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Figure 3. Variation of local Nusselt number and local Sherwood number with ϕ  for different values 

of Df when 0.15,Sr = 0.1,σ = and =0.1 (stretching)/ -0.1 (shrinking) .ε  
However, due to the space constraint profiles of velocity, temperature and concentration will not be 

represented here. Table 1 states the smallest eigenvalue for some values of σ andε . According to the 
table, the values of γ  for first solution are positive indicates that the first solution is stable while the 
smallest eigenvalues for second solution are negative which denotes that the second solution is 
unstable. 

 
Table 1. The smallest eigenvaluesγ for some values ofσ and ε when 0.1.ϕ =   

σ  cε  ε  γ  (First solution) γ  (Second solution) 

0.1 -0.2914 
-0.291 0.0317 -0.0314 
-0.29 0.0589 -0.0580 
-0.2 0.4922 -0.4353 

0.5 -0.287 
-0.285 0.0592 -0.0583 
-0.28 0.1118 -0.1088 
-0.2 0.4034 -0.3666 

5.  Conclusion 
The characteristic of boundary layer flow, heat and mass transfers due to partial slip, Soret and Dufour 
effects over stretching/ shrinking sheet in Copper-water nanofluid is studied using Tiwari and Das 
model. It was found that for 0.35ε < − the dual solutions were obtained for some values of partial-slip. 
Increasing partial slip parameter gave different trends for stretching and shrinking sheets for shear 
stress, heat transfer as well as mass transfer. The effect of increasing Soret increased the heat transfer 
but decreased the mass transfer at the surface. Meanwhile, increasing Dufour effect accelerated the 
mass transfer rate and decelerated the heat transfer rate. The stability analysis was performed and the 
eigenvalues for first solution are positive values indicate that the first solution was stable and reliable. 
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