This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Improvements in the simulation code of the SOX experiment

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation A. Caminata et al 2017 J. Phys.: Conf. Ser. 888 012145 DOI 10.1088/1742-6596/888/1/012145

1742-6596/888/1/012145

Abstract

The aim of the SOX experiment is to test the hypothesis of existence of light sterile neutrinos trough a short baseline experiment. Electron antineutrinos will be produced by an high activity source and detected in the Borexino experiment. Both an oscillometry approach and a conventional disappearance analysis will be performed and, if combined, SOX will be able to investigate most of the anomaly region at 95% c.l. This paper focuses on the improvements performed on the simulation code and on the techniques (calibrations) used to validate the results.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/888/1/012145