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Abstract. The current status of the phenomenology of short-baseline neutrino oscillations
induced by light sterile neutrinos in the framework of 3+1 mixing is reviewed.

The current experimental and theoretical research of the physics of massive neutrinos is
based on the standard paradigm of three-neutrino (3ν) mixing which describes the oscillations
of neutrino flavors measured in solar, atmospheric and long-baseline experiments [1–3]. In
this framework, the three left-handed active neutrino fields νeL, νμL, ντL are unitary linear
combinations of three left-handed massive neutrino fields ν1L, ν2L, ν3L with respective masses
m1, m2, m3:

ναL =
N∑
k=1

UαkνkL (α = e, μ, τ), (1)

for N = 3, where U is the 3×3 unitary mixing matrix. There are two independent squared-mass
differences: the small solar squared-mass difference

Δm2
SOL = Δm2

21 � 7.4× 10−5 eV2, (2)

and the larger atmospheric squared-mass difference

Δm2
ATM = |Δm2

31| � |Δm2
32| � 2.5× 10−3 eV2, (3)

with Δm2
kj = m2

k −m2
j .

Although the standard 3ν framework is very successful at explaining the currently well-
established neutrino data, it is interesting to explore non-standard effects in neutrino oscillations,
which are expected from the new physics beyond the Standard Model. In this review we consider
the current short-baseline neutrino oscillation anomalies and we discuss their explanation in
the framework of the 3+1 mixing scheme. There are three short-baseline neutrino oscillation
anomalies:

1. The LSND observation of a short-baseline excess of ν̄e-induced events in a ν̄μ beam [4,5].

2. The Gallium neutrino anomaly [6–10], consisting in a short-baseline disappearance of νe
measured in the Gallium radioactive source experiments GALLEX [11] and SAGE [12].

3. The reactor antineutrino anomaly [13], which is a deficit of the rate of ν̄e observed in
several short-baseline reactor neutrino experiments in comparison with that expected from
the calculation of the reactor neutrino fluxes [14,15].

http://creativecommons.org/licenses/by/3.0
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A neutrino oscillation explanation of these anomalies requires the existence of at least one
additional squared-mass difference

Δm2
SBL � 1 eV2, (4)

which is much larger than Δm2
ATM and requires the existence of at least one massive neutrino

ν4 in addition to the three standard massive neutrinos ν1, ν2, ν3 (see the review in Ref. [16]).
Since from the LEP measurement of the invisible width of the Z boson we know that there are
only three active neutrinos, in the flavor basis the additional massive neutrinos correspond to
sterile neutrinos [17], which do not have standard weak interactions.

In the general case of N > 3 massive neutrinos, the mixing of the three active neutrino fields
which are observable through weak interactions is given by Eq. (1) with N ≥ 4 and U is a 3×N
rectangular mixing matrix which is obtained by keeping only the first three rows of a unitary
N × N unitary matrix. Moreover, the mixing of the standard active neutrinos with the non-
standard massive neutrinos must be very small, in order not to spoil the successful 3ν mixing
explanation of solar, atmospheric and long-baseline neutrino oscillation measurements [1–3]:

|Uαk|2 � 1 (α = e, μ, τ ; k = 4, . . . , N). (5)

In other words, the non-standard massive neutrinos must be mostly sterile.
In this review we consider the so-called 3+1 scheme1 in which there is a non-standard massive

neutrino (mostly sterile) at the eV scale which generates the new squared-mass difference in
Eq. (4) and the three standard massive neutrinos are much lighter than the eV scale2. Let us
emphasize that the 3+1 mixing scheme must be considered as effective, in the sense that the
existence of more non-standard massive neutrinos is allowed, as long as their mixing with the
three active neutrinos is sufficiently small to be negligible in the analysis of the data of current
experiments.

In the case of 3+1 neutrino mixing [18–20, 23], we have Δm2
41 = Δm2

SBL. The oscillation
probabilities of the flavor neutrinos in short-baseline experiments are given by

P
(SBL)

(−)
να→

(−)
νβ

� sin2 2ϑαβ sin
2

(
Δm2

41L

4E

)
(α �= β), P

(SBL)
(−)
να→

(−)
να

� 1− sin2 2ϑαα sin
2

(
Δm2

41L

4E

)
,

(6)
where L is the source-detector distance and E is the neutrino energy. The oscillation amplitudes
depend only on the absolute values of the elements in the fourth column of the mixing matrix:

sin2 2ϑαβ = 4|Uα4|2|Uβ4|2 (α �= β), sin2 2ϑαα = 4|Uα4|2
(
1− |Uα4|2

)
. (7)

Hence, even if there are CP-violating phases in the mixing matrix, CP violation cannot
be measured in short-baseline experiments. However, the effects of the non-standard CP-
violating phases are observable in the experiments sensitive to the oscillations generated by
the smaller squared-mass differences Δm2

ATM [44–51] and Δm2
SOL [52]. The dependence on the

same elements of the mixing matrix of the different amplitudes of the oscillations in short-
baseline appearance and disappearance experiments generates the appearance-disappearance
constraint [18, 19]

sin2 2ϑαβ � 1

4
sin2 2ϑαα sin2 2ϑββ (α = e, μ, τ). (8)

1 The 2+2 mixing schemes which were favorite in the 90’s after the results of the LSND experiment [18–21] are
excluded by solar and atmospheric neutrino oscillation data [22,23]. In the literature one can also find studies of
the 3+2 [24–32], 3+3 [26,33], 3+1+1 [34–38], and 1+3+1 [39,40] schemes.
2 We do not consider the 1+3 scheme in which Δm2

SBL is obtained with a very light (or massless) non-standard
neutrinos and the three standard massive neutrinos have almost degenerate masses at the eV scale, because
this possibility is strongly disfavored by cosmological measurements [41] and by the experimental bounds on
neutrinoless double-β decay if the massive neutrinos are Majorana particles (see Refs. [42, 43]).
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Figure 1. (a) Allowed regions in the sin2 2ϑeμ–Δm2
41 plane obtained in the 3+1 global (GLO)

fit of short-baseline neutrino oscillation data compared with the 3σ allowed regions obtained

from
(−)
νμ → (−)

νe short-baseline appearance data (APP) and the 3σ constraints obtained from
(−)
νe short-baseline disappearance data (νe DIS),

(−)
νμ short-baseline disappearance data (νμ DIS)

and the combined short-baseline disappearance data (DIS). The best-fit points of the GLO and
APP fits are indicated by crosses. (b) Comparison of the allowed regions obtained in the global
(APP-GLO) and pragmatic (APP-PrGLO) fits of short-baseline appearance data.

The most recent global fits of short-baseline neutrino oscillation data [16,53,54] indicate that
the most likely values of the 3+1 mixing parameters lie in a region around

Δm2
41 ≈ 1-2 eV2, |Ue4|2 ≈ 0.03, |Uμ4|2 ≈ 0.01. (9)

Figure 1(a) shows the allowed regions in the sin2 2ϑeμ–Δm2
41 plane obtained in the 3+1

global (GLO) fit of short-baseline neutrino oscillation data compared with the bounds from
the data of disappearance experiments. The best-fit values of the oscillation parameters are
(Δm2

41)bf = 1.6 eV2, (|Ue4|2)bf = 0.028, (|Uμ4|2)bf = 0.014, which imply (sin2 2ϑeμ)bf = 0.0015,
(sin2 2ϑee)bf = 0.11 and (sin2 2ϑμμ)bf = 0.054.

Figure 2(a) shows the allowed regions in the sin2 2ϑeμ–Δm2
41 plane obtained in the 3+1 global

fits of Ref. [54]. Comparing figures 1(a) and 2(a) one can see that there is an approximate
agreement of the results of the two different global fits. The differences are mainly due to
different ways of analyzing old data on which there is limited information. The best-fit values of
the oscillation parameters obtained in Ref. [54] are in approximate agreement with those above:
(Δm2

41)bf = 1.75 eV2, (|Ue4|2)bf = 0.027, (|Uμ4|2)bf = 0.014, which imply (sin2 2ϑeμ)bf = 0.0015,
(sin2 2ϑee)bf = 0.11 and (sin2 2ϑμμ)bf = 0.54.

From Figure 1(a) one can see that the separate 3σ exclusion curves obtained from
(−)
νe and

(−)
νμ

short-baseline disappearance data do not exclude any area of the region that is allowed at 3σ by

the analysis of the
(−)
νμ →(−)

νe short-baseline appearance data. These bounds are simply obtained
taking into account that from the unitarity of the mixing matrix |Uα4|2 ≤ 1− |Uβ4|2 for α �= β,
which implies that sin2 2ϑαβ ≤ 4|Uα4|2

(
1− |Uα4|2

)
= sin2 2ϑαα. On the other hand, when the
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(a) (b)

Figure 2. (a) Allowed regions in the sin2 2ϑeμ–Δm2
41 plane obtained in the 3+1 global fits of

Ref. [54] (a) and Ref. [53] (b). The red and blue regions correspond, respectively to 90% and
99% C.L. The best-fit point is marked by a yellow star.

(−)
νe and

(−)
νμ bounds are combined through the appearance-disappearance constraint in Eq. (8) the

disappearance exclusion curve excludes most of the appearance allowed region. Hence, there is
a strong appearance-disappearance tension3 [16, 29, 31,32,38–40,55–58].

The appearance-disappearance tension can be alleviated by excluding from the fit the low-
energy bins of the MiniBooNE experiment [59, 60] which have an anomalous excess of νe-like
events. This is the pragmatic approach (PrGLO) advocated in Ref. [38]. The motivation
is that the MiniBooNE low-energy excess requires a small value of Δm2

41 and a large value
of sin2 2ϑeμ [56, 57], which are excluded by the data of other experiments (see Ref. [38] for
further details). This is illustrated in Figure 1(b) where one can see that the region allowed by
appearance data shifts towards larger values of Δm2

41 and smaller values of sin2 2ϑeμ when the
MiniBooNE low-energy bins are omitted from the fit. As a result, the overlap of the appearance
and disappearance allowed regions increases, relieving the appearance-disappearance tension.
Therefore, it is reasonable to adopt the pragmatic approach, waiting for a clarification of the
cause of the MiniBooNE low-energy excess by the MicroBooNE4 experiment at Fermilab [61].

Figure 3 shows the allowed regions in the sin2 2ϑeμ–Δm2
41, sin

2 2ϑee–Δm2
41 and sin2 2ϑμμ–

Δm2
41 planes obtained from an update of the analysis in Ref. [16] with an improved treatment of

the MiniBooNE background disappearance due to neutrino oscillations [62]. These regions are

relevant, respectively, for
(−)
νμ →(−)

νe appearance,
(−)
νe disappearance and

(−)
νμ disappearance searches.

Figure 3 shows also the region allowed by
(−)
νμ →(−)

νe appearance data and the constraints from
(−)
νe

disappearance and
(−)
νμ disappearance data. The best-fit values of the oscillation parameters are

(Δm2
41)bf = 1.6 eV2, (|Ue4|2)bf = 0.027, (|Uμ4|2)bf = 0.012, which imply (sin2 2ϑeμ)bf = 0.0013,

(sin2 2ϑee)bf = 0.10 and (sin2 2ϑμμ)bf = 0.050.

3 This tension is unavoidable in any 3+Ns scheme with Ns sterile neutrinos [55], because the mixing of νe and
νμ with the sterile neutrinos required by the appearance data implies νe and νμ disappearances that are larger
than the respective experimental bounds.
4 In the MiniBooNE mineral-oil Cherenkov detector νe-induced events cannot be distinguished from νμ-induced
events which produce only a visible photon (for example neutral-current π0 production in which only one of the
two decay photons is visible). On the other hand, MicroBooNE is a large Liquid Argon Time Projection Chamber
(LArTPC) in which electrons and photons can be distinguished.
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Figure 3. Allowed regions in the sin2 2ϑeμ–Δm2
41 (a), sin

2 2ϑee–Δm2
41 (b), and sin2 2ϑμμ–Δm2

41

(c) planes obtained in the pragmatic 3+1 global fit PrGLO of short-baseline neutrino oscillation

data compared with the 3σ allowed regions obtained from
(−)
νμ → (−)

νe short-baseline appearance

data (APP) and the 3σ constraints obtained from
(−)
νe short-baseline disappearance data (νe DIS),

(−)
νμ short-baseline disappearance data (νμ DIS) and the combined short-baseline disappearance
data (DIS). The best-fit points of the global (PrGLO) and APP fits are indicated by crosses.

Figure 3(c) shows a comparison of the allowed regions in the sin2 2ϑμμ–Δm2
41 plane with

the exclusion curves obtained recently by the IceCube [63] and MINOS [64] experiments. One
can see that they disfavor the low-Δm2

41 and high-sin2 2ϑμμ part of the allowed region. This is
confirmed by the results presented in Ref. [53], where the 3+1 global fit of Ref. [54] was updated
with the addition of the IceCube data. The resulting allowed regions in the sin2 2ϑμμ–Δm2

41

plane are shown in Figure 2(b). Comparing Figures 2(a) and 2(b) one can see that the effect of
including the IceCube data in the fit is to disfavor the low-Δm2

41 region. The main allowed region
around the best-fit point remains stable and there is a slight improvement of the likelihood of
the high-Δm2

41 region.
Because of the scarcity of sensitive data, of the possible existence of unknown systematic

errors, and of the appearance-disappearance tension, the possible existence of light sterile
neutrinos at the eV scale is controversial and needs new reliable experimental checks.
Fortunately, there is an impressive program of new experiments which are planned to check
the existence of eV sterile neutrinos (see the reviews in Refs. [16, 65–67]). Figure 4 shows
a comparison of the sensitivities of future experiments with the PrGLO allowed regions of

Fig. 3 for (a)
(−)
νμ → (−)

νe transitions (SBN [68], nuPRISM [69], JSNS2 [70]), (b)
(−)
νe disappearance

(CeSOX [71], BEST [72], IsoDAR@KamLAND [73], IsoDAR@C-ADS [74], DANSS [75], NEOS

[76], Neutrino-4 [77], PROSPECT [78], SoLid [79], STEREO [80], KATRIN [81]), and (c)
(−)
νμ

disappearance (SBN [68], KPipe [82]).
Moreover, light sterile neutrinos have important effects that could be observed in β decay

experiments [83–87], in neutrinoless double-β decay experiments [10, 88–96], in solar neutrino
experiments [10,40,52,97–100], in long-baseline neutrino oscillation experiments [44–50,101,102],
in atmospheric neutrino experiments [103–111], in supernova neutrino experiments [112–115], in
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Figure 4. Sensitivities of future experiments compared with the PrGLO allowed regions of
Fig. 3.

indirect dark matter detection [116]), in high-energy cosmic neutrinos experiments [117], and in
cosmology (see Refs. [16, 118,119]).

Let us finally emphasize that the discovery of the existence of sterile neutrinos would be a
major discovery which would have a profound impact not only on neutrino physics, but on our
whole view of fundamental physics, because sterile neutrinos are elementary particles beyond the
Standard Model. The existence of light sterile neutrinos would prove that there is new physics
beyond the Standard Model at low-energies and their properties can give important information
on this new physics (see Refs. [120,121]).
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