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Abstract. I review some recent developments concerning soliton solutions in biological
microtubules and their significance in transferring energy without dissipation. I discuss various
types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations
describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a
microtubule system with dipole-dipole interactions. These results will hopefully contribute to a
better understanding of the functional properties of microtubules, including the motor protein
dynamics and the information transfer processes. With regards to the latter we also speculate
on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton
solutions may have a microscopic quantum origin, which we briefly touch upon.

1. Introduction
The rôle of solitons in biological systems as providers of efficient (mostly dissipation free)
energy transport, in analogy with the frictionless electric current transfer in superconductivity
theories, has a long history. Already in 1968, H. Fröhlich [1] have suggested that macroscopic
quantum coherent phenomena may be responsible for dissipation-free energy and signal transfer
in biological systems through coherent excitations in the microwave region of the spectrum due
to nonlinear couplings of biomolecular dipoles. The frequency with which such coherent modes
are ‘pumped’ in biological systems was conjectured to be of order of the inverse of the time
interval tcoherence Froehlich ∼ 10−11 − 10−12 s , which is known as Fröhlich’s coherence time.

Soon after, A.S. Davydov [2], proposed that solitonic excitation states may be responsible
for dissipation-free energy transfer along the α-helix self-trapped amide in a fashion similar to
superconductivity: there are two kinds of excitations in the α-helix: deformational oscillations
in the α-helix lattice, giving rise to quantized excitations (“phonons”), and internal amide
excitations. The resulting non-linear coupling between these two types of excitations is a
Davydov soliton, which traps the vibrational energy of the α-helix and thus prevents its
distortion (solitons are classical field theory configurations with finite energy). In a rather
different approach, F. Popp [3] suggested that studies of the statistics of counts of photons in
ultra-weak bioluminescence in the visible region of the spectrum point towards the existence of
a coherent component linked to the living state.

In the 1990’s a suggestion on the rôle of quantum effects on brain functioning, and in
particular on conscious perception, has been put forward by S. Hameroff and R. Penrose [4],
who concentrated on the microtubules (MT) [5] of the brain cells. In particular, they noted that
one may view the tubulin protein dimer units of the MT as a quantum two-state system, in
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coherent superposition. The model of [4] assumes, without proof, that sufficient environmental
isolation occurs, so that the in vivo system of MT in the brain undergoes self-collapse, as a
result of sufficient growth that allowed it to reach a particular threshold, namely a critical
mass/energy, related to quantum gravity (orchestrated reduction method). This type of collapse
should be distinguished from the standard environmental decoherence that physical quantum
systems are subjected to [6]. In this way, the authors of [4] argue that decoherence times of order
O(1 s), which is a typical time for conscious perception, may be achieved, thereby deducing that
consciousness is associated with quantum computations in the mind.

Unfortunately, in my opinion, environmental decoherence, even for in vivo MT, cannot be
ignored. Microtubules (MT) are fundamental constituents of most cells [5], not only the brain
ones, and play a crucial rôle in the cell mytosis. They are cylindrically shaped cytoskeletal
biopolymers. They are found in eukaryotic cells and are formed by the polymerization of
heterodimers built of two globular proteins, alpha and beta tubulin. The MTs can grow up
to 50 µm long (with an average length of 25 µm). Each MT is built of a set of macroscopic
dipoles which generate dynamical electric fields, that prove crucial for an understanding of the
functional properties of MT and their interactions.

One-spatial dimensional Solitons in ferreoelectric models of MT have been discussed from
a rather phenomenological point of view in [7], and argued to provide efficient energy-transfer
mechanisms. These solitons are kinks of an appropriate variable, on the main axis of the MT,
which is associated with the appropriate projection of the dipole vectors of the MT. In a series
of works [8, 9], we have developed a microsocpic quantum electrodynamics cavity model for MT,
in which electromagnetic interactions between the electric dipole moments of the tubulin protein
dimer units and the corresponding dipole quanta in the (thermally isolated) water interiors of
the in vivo MT, are argued to be the dominant forces, inducing environmental entanglement
and eventual decoherence [6] in at most O(10−6 − 10−7) s. Such times are much shorter than
the required time scale for conscious perception, but have been argued to be sufficient for
dissipation-less energy transfer and signal transduction along moderately long MT of length
sizes of order µm = 10−6 m. As I will discuss below, the basic underlying mechanism is the
formation of appropriate solitonic dipole states along the protein dimer walls of the MT, which
are reminiscent of the quantum coherent states in the Fröhlich-Davydov approach. These dipoles
states are classical, obtained after decoherence of quantum states, and correspond to solutions
of the non-linear equations that describe the dynamics of the MT within certain models that
take proper account of the dipole-dipole interactions. We have also speculated [9] that under
sufficient environmental isolation, which however is not clear if it can be achieved in in vivo MT
systems, these coherent states may provide the basis for an operation of the MT as quantum logic
and information teleporting gates. In particular, it has been argued in [8] that sufficiently strong
dipole-dipole interactions between ordered water molecules in the interior of the MT cavities
and the dimers are responsible for providing thermal isolation, and thus sustainable conditions
for the formation of coherent dipole solitonic states on the MT surface, which could then be
responsible for dissipation-free energy and signal transfer. At any rate, our main concern in the
above works was the search for, and modeling of, possible quantum effects in cell MT which may
not be necessarily associated with conscious perception. In fact in this talk I will disentangle the
latter from dissipation-free energy and signal transfer in biological matter, which I will restrict
my attention to.

In this respect I will discuss some recent developments I was involved with in ref. [10], in
which we discussed and classified interesting types of solitons in MTs, including one and two-
spatial dimensional solutions, and in particular those with a helical shape, which have a chance of
providing more realistic models for non-linear MT dynamics. I will not discuss the environment
of ordered water molecules, however I will take into account dipole-dipole interactions between
dimers on the MT surface and argue that they also can also provide the necessary non-linear
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dynamics for the formation of solitonic dipole states. In this latter respect, the rôle of the
ordered-water molecules via their dipole-dipole interactions with the MT dimers can be viewed
as providing the necessary thermal isolation, according to the ideas of [8], so that the coherent
solitonic states can be formed.

The structure of the talk is as follows: In the next section 2, I discuss the model for MT,
which is based on the so-called pseudo-spin non-linear σ-model, and which includes dipole-
dipole interactions that they were crucial in our microscopic approach [8, 9] in providing the
necessary isolation from thermal losses. In the following section 3, I classify the various solitonic
solutions arising from the non-linear dynamics of the model. I discuss one-, and two-dimensional
representations of the solutions and their significance as far as energy transfer along the MTs
is concerned. I also discuss ‘spike configurations, and the properties of the associated electric
fields produced by such configurations. In the concluding section, 4, I speculate on the rôle of
physical systems of MTs with solitons as logical gates, which may be important for ‘quantum
computations’ of biological matter, which in this way optimises signal and energy transduction,
by appropriate decision taking processes that chose the most efficient path, minimising losses.
We note that similar speculations have been made on mechanisms for light harvesting by marine
algae [11].

2. The pseudo-spin σ-model for microtubules and the phase diagram
MTs are realized as hollow cylinders typically formed by 13 parallel protofilaments (PFs)
covering the wall of MT [5, 12, 13]. Each PF represents a tubulin heterodimer with the electric
dipole momentum, P. (See Fig. 1.) Due to their interaction with the complex biological

Figure 1. The structure of the cytoskeleton microtubule (MT). The arrows indicate the
orientation of the permanent dipole moments of the tubulin heterodimers with respect to the
MT surface. Picture from ref. [10].

environment (solvent) the MTs may experience a strong radial electrostatic field leading to the
additional (radial) polarization of tubulins [14].

The tibulin heterodimer contains approximately 900 amino acid residues with the number of
atoms about 14000. The total mass of the heterodimer can be estimated as, (M ≈ 1.84 ·10−19g).
Each heterodimer can be considered as effective electric dipole with α and β tibulin being as
positive and negative side of dipole, respectively [15].

In our model [10] we treat each dipole as a classical pseudo-spin, Si, with a constant modulus.
The potential energy of the system can be written as:

U0 =
∑
〈i,j〉

Jij
(
Si · Sj − 3(Si · eij)(Sj · eij)

)
−B

∑
i

Si · er, (1)
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where eij is a unit vector parallel to the line connecting the dipoles, Si and Sj . The scalar
product is understood as follows: Si · Sj = S1

i S
1
j + S2

i S
2
j + S3

i S
3
j . The first sum describes the

dipole-dipole interaction, and the second one characterizes the effect of the transversal (radial)
electrostatic field acting on the dipoles. The interaction coupling Jij is given by Jij = 1

4πε ε0 r3ij
,

where ε is the permittivity of the MT medium, ε0 that of the vacuum and rij is the distance
between sites i and j of the lattice model. This coupling expresses the well-known fact that
dipole-dipole interactions in electromagnetism scale with the inverse of the cubic power of the
distance between the dipoles.The quantity B denotes the amplitude of the effective electric field,
produced by the solvent environment, along the radial direction er.

Since the MTs may exhibit ferroelectric properties at room temperature, one can consider the
MT as a ferroelectric system [13, 16]. To include into consideration the ferroelectric properties
of the MT, we adopt the approach developed in [17]. In this case, the overall effect of the
environment on the effective spin, Si, is described by the double-well quartic on-site potential,

V (Si) = P (Si · ez)2 +Q(Si · ez)4. (2)

It is convenient to parameterize the pseudo-spin Si by the unit vector ni, as: Si = Sni, where
S is the module of Si. Then, the total potential energy of the system can be written as,

U = S2
∑
〈i,j〉

Jij
(
ni · nj − 3(ni · eij)(nj · eij)

)
+
∑
i

(
PS2(ni · ez)2 +QS4(ni · ez)4 −BSni · er

)
. (3)

In what follows we shall use the local spherical coordinates (Θi,Φi) to define the orientation
of the dipole, It is commonly accepted that coupling constants, Jij , are nonzero only for the
nearest-neighbor dipole moments. The system of MT dimers may be represented as a triangular
lattice, as shown in Fig. 2, so that each spin has six nearest neighbors. We denote the constants
of interaction between the central dipole in Fig. 2 and nearest neighbors as, J0α, and the distance
between the central spin and its nearest neighbors as, dα (α = 1, 2, . . . , 6), setting d01 = d04 = a,
d02 = d05 = b, d03 = d06 = c. The corresponding angles (between the central dimer and others)
are denoted as, θ1, θ2 and θ3, so that: e01 · e01 = cos θ1, e01 · e02 = cos θ2, e01 · e06 = cos θ3.

Typical values of parameters known from the literature are: a = 8 nm, b = 5.87 nm,
c = 7.02 nm, θ1 = 0, θ2 = 58.2 o, θ3 = 45.58 o, S = 1714 Debye [18, 17] (See Fig. 2b.)
The radius of the MT can be estimated as, R ≈ 11.2 nm [16, 19]. The unit cell shown in Fig. 2
consists of the central spin surrounded by six neighbors. Its area is: Σ0 = 3ad = 120 nm2.

From now on we shall work in the Continuum approximation, which suffices for the
classification of the various solutions describing the non-linear dynamics of the system. The
continuum limit is obtained by allowing the area per a site, Σ0 to go to zero, keeping the total
area, NΣ0 fixed. In this limit, the summation is replaced by the integral over the MT surface:∑
〈ij〉 → (1/2)

∫
Σ d

2x. The variable, ni = n(ri), should be replaced by a smooth function of the

continuum coordinates: n(ri)→ n(r).
In the cylindrical coordinates the metric on Σ can be written as,

ds2 = R2dϕ⊗ dϕ+ dz ⊗ dz, (4)

where R is the radius of the MT. In what follows, we use the abbreviation: ∇na · ∇nb =
gij∂in

a∂jn
b.
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Figure 2. (Color online) Tubulin neighborhood in the hexagonal unit cell of the microtubule.
The distance between dimers is d. The heterodimer helix direction is defined by the height, h.
The typical values of parameters are: a = 8 nm, b = 5.87 nm, c = 7.02 nm, d = 5 nm, h = 4.9 nm,
θ1 = 0, θ2 = 58.2 o, θ3 = 45.58 o [18, 16, 17, 19] .

The metric in the intrinsic space of pseudo-spins is given by: Gab = δab − hab (a, b = 1, 2, 3),
where

h22 =
6S2

J

3∑
α=1

J0α sin2 θα, h23 =
3S2

J

3∑
α=1

(−1)αJ0α sin θα cos θα, h33 =
6S2

J

3∑
α=1

J0α cos2 θα .

(5)

The computation of the constants yields: h22 = 1.55, h23 = 0.11, h33 = 1.45.
Further, it is convenient to introduce the dimensionless coordinates, ζ = z/

√
Σ0 and

R̃ = R/
√

Σ0. Now, the total action yielding the equations of motion can be written as,

Stot = J

∫
dt

∫
Σ
LdΣ + Sλ, (6)

where dΣ = R̃dζdϕ and

Sλ = J

∫
dt

∫
Σ
λ(n · n− 1) dΣ. (7)

The Lagrangian of the system is given by,

L =
ρ

2

(
∂n

∂t

)2

+
1

2
Gab∇na · ∇nb − V(n), (8)

where ρ = I/J and

V(n) = Gabn
anb + g0(n3)2 + g1(n3)4 − g2n

1. (9)

Taking into account that h23, |h33−h22| � 1, we neglect by contributions of these terms and keep
only terms with h33. This approximation transforms the Lagrangian (8) into the following [10]

L =
ρ

2

(
∂n

∂t

)2

+
1

2
(∇n)2 − h

2
(∇n2 · ∇n2 +∇n3 · ∇n3)−W(n), (10)
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where h = h33 and

W(n) = h(n1)2 + g0(n3)2 + g1(n3)4 − g2n
1. (11)

As one can see, in the continuum limit the electric properties of the MT are described by the
nonlinear anisotropic σ-model. The order parameter, n, is the local polarization unit vector
specified by a point on the sphere, S2.

Using the local spherical coordinates (Θ,Φ) to define the orientation of the dipole: n =
(sin Θ cos Φ, sin Θ sin Φ, cos Θ), the Lagrangian of the system can be recast as follows:

L =
ρ

2
((∂tΘ)2 + sin2 Θ(∂tΦ)2) +

1

2

((
∇Θ

)2
+
(
∇Φ
)2)− h

2
(cos Θ sin Φ∇Θ + sin Θ cos Φ∇Φ)2

− h

2
sin2 Θ(∇Θ)2 −W(Θ,Φ), (12)

where

W(Θ,Φ) = (g0 − h) cos2 Θ + g1 cos4 Θ− h sin2 Θ sin2 Φ− g2 sin Θ cos Φ. (13)

The Euler-Lagrange equations can be written as [10],

ρ
∂2Θ

∂t2
=
δL
δΘ

,

ρ
∂

∂t

(
sin2 Θ

∂Φ

∂t

)
=
δL
δΦ

. (14)

The ground state of the MT, yielding the permanent dipole moment with Φ = 0, is defined
by the minimum value of the energy,

E(u) = E0 + J

∫
Σ
V(u) dΣ, (15)

where u = cos Θ,

E0 = −Jg1

∫
Σ
σ2 dΣ, (16)

and

V = g1

(
(σ − u2)2 − κ

√
1− u2

)
. (17)

Here we set σ = (h− g0)/(2g1) and κ = g2/g1. One can see that there are three critical points:
u1 = 0, and u2,3 defined from the equation:

u6 − (1 + 2σ)u4 + σ(2 + σ)u2 + κ2/16− σ2 = 0. (18)

The behavior of the dimensionless energy density of the system, w = V/g1, as a function of u
and parameters σ and κ is presented in Fig. 3.

First, we consider the case when the parameter κ = 0. In this case, the critical points of the
Hamiltonian are given by

u1 = 0, u2,3 = ±
√
σ. (19)

As one can see, if σ < 0, the ground state of the MT is paraelectric, u1 = 0. It corresponds to
the radial orientation of the permanent dipole moments of the tubulin dimers with respect to
the surface of the MT (Fig. 1). For σ > 0, the homogeneous ground state is a doubly degenerate
ferroelectric state. The dipole momentum of the tubulin dimer is given by u2,3 = ±

√
σ (see Fig.

3a).
It follows from the phase diagram of Fig. 4 that, when κ > 4σ, the ground state of the MT

is paraelectric, corresponds to the radial orientation of the permanent dipole moments of the
tubulin dimers with respect to the surface of the MT. When κ < 4σ, the ground state of the
system is ferroelectric.
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(a) (b) (c) (d)

Figure 3. Dimensionless energy density w as a function of u and parameters σ and κ. (a,b) w
vs u and σ: (a) κ = 0, (b) κ = 1; (c,d) w vs u and κ: (c) σ = 0, (d) σ = 0.5.

Figure 4. The phase diagram.

3. A classification of the non-linear solutions: Snoidal waves, Kinks, Helical
Solitons and Spikes
In this section we proceed with a classification of the non-linear solutions of the equations of
motion (14). We shall be brief in our description, referring the interested reader for details to
our work in ref. [10].

In order to construct solutions for nonlinear waves moving along the MT with the constant
velocity, we use the traveling wave ansatz. We assume that in cylindrical coordinates the field
variables are functions of

ξ =

√
2

ηpΣ0
(z + h0ϕ/2π − vt), (20)

where η = h/g1 and p = 1 + (h0/2πR)2, the velocity of the wave being v. One can then show
that the field equations possess the first integral of motion:

(u2
0 − cos2 Θ)

(
dΘ

dξ

)2

+ sin2 Θ
(
u2

0 −
1

h
cot Θ− sin2 Φ

)(dΦ

dξ

)2

+
1

2
sin(2Θ) sin(2Φ)

dΘ

dξ

dΦ

dξ

− (σ − cos2 Θ)2 + η sin2 Θ sin2 Φ + κ sin Θ cos Φ = const, (21)

where u2
0 = 1− 1/h− ρv2/(hpΣ0). This implies for the nonlinear wave propagation velocity v:

v =

√
(σ2

0 − u2
0)
hpΣ0

ρ
, (22)
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Figure 5. Velocity of the excitation (m/s): M = 10−23 g (blue), M = 10−22 g (red), l = 2 nm.
From ref. [10].

where we set σ2
0 = 1 − 1/h. The dependence of v on the parameter u0 is depicted in Fig. 5,

from which we conclude [10] that the velocity of the wave is bounded from above v ≤ v0, where
v0 ≈ 155m/s.

3.1. Solutions with Φ = 0
Here we discuss solutions of the system of non-linear equations (14) and (21) with Φ = 0 and
Θ = Θ(ξ). For the function, Θ(ξ), we obtain the nonlinear differential equation,

(u2
0 − cos2 Θ)

d2Θ

dξ2
+

1

2
sin(2Θ)

(
dΘ

dξ

)2

− sin(2Θ)(σ − cos2 Θ) +
κ

2
cos Θ = 0. (23)

The phase portraits of the system (Θ(ξ), PΘ = dΘ(ξ)/dξ) is determined from (21), which in this
case reads [10]

(u2
0 − cos2 Θ)

(dΘ

dξ

)2
− (σ − cos2 Θ)2 + κ sin Θ = const. , (24)

and are depicted in Figs. refPP1 and 7, for various parameters. One can observe the occurrence
of the three elliptic points for σ > u2

0 (Fig. 6a). When σ < u2
0, two elliptic points disappear.

By substitution u = cos Θ into Eq. (24), one can rewrite it as,

u2
0 − u2

(1− u2)

(du
dξ

)2
d− (σ − u2)2 + κ

√
1− u2 = const. (25)

which can be integrated to give (
du

dξ

)2

+ V (u) = 0, (26)

where −ε is the integration constant, and

V (u) = −((σ − u2)2 − κ
√

1− u2 − ε)(1− u2)

u2
0 − u2

. (27)

Thus, the dynamics of the dipoles on the surface of the MT can be considered as the motion of
the effective particle of mass m = 2 in the potential V (u), with the total energy of the system
being, E = 0. The phase portrait of the system (26) in the plane (Θ, Pu), with Pu = du/dξ, is
shown in Fig. 8.
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(a) (b) (c)

Figure 6. Phase portrait of the system (24). The momentum PΘ is defined as, PΘ = dΘ/dξ.
(a) σ = 0.75, u0 = 0.5; (b) σ = 0.2, u0 = 0.5; (c) σ = 0.75, u0 = 0. In all cases: κ = 0. From
ref. [10].

(a) (b) (c)

Figure 7. Phase portrait of the system (24). The momentum PΘ is defined as, PΘ = dΘ/dξ.
(a) σ = 0.75, u0 = 0.5; (b) σ = 0, u0 = 0.5, ; (c) σ = 0.75, u0 = 0. In all cases: κ = 0.5. From
ref. [10].

3.1.1. Snoidal waves and kinks: κ = 0. A sn-oidal function snu is a particular Jacobi elliptic
function. In particular, such functions are defined by means of the inverse of the following
incomplete elliptic integral of the first kind [20]

u =

∫ ϕ

0

dθ√
1−m sin2 θ

⇒ snu = sinϕ , (28)

where ϕ is called the amplitude, and the parameter 0 ≤ m ≤ 1. Thus a sn oidal function, as all
elliptic functions, are functions of two variables (ϕ, m). 1

To construct sn-oidal waves in our case, we first assume κ = 0, which implies absence of
the intrinsic radial electric field (g2 = 0). Choosing the constant of integration in Eq. (24) as,
ε = (σ − u2

0)2, we obtain, (
du

dξ

)2

= (2σ − u2
0 − u2)(1− u2). (29)

1 One can define other functions, such as cnu = cosϕ (a cn-oidal function), or dnu =
√

1 −msin2 ϕ (dn-oidal
function).
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(a)
(b)

Figure 8. Phase portrait of the system (25) in the plane (u, Pu): (a) σ = u2
0 = 0.25, k = 0.5;

(b) σ = 0.6, k = 0.975. Parameters: u0 = 0.5, κ = 0.

Assume u2
0 < 2σ < 1 + u2

0, then the analytical solution of this equation is given by a snoidal
wave,

u = k sn(ξ − ξ0, k). (30)

Here k =
√

2σ − u2
0, and sn(z, k) is the Jacobi elliptic function. In Fig. 9 the static sn-solutions

for different choices of the constant k are depicted. In Fig. 8a, the orbit for k = 0.5 is represented
by the orange curve.

Figure 9. The sn-solution: k = 0.1 (blue), k = 0.5 (orange), k = 0.975 (black), k = 0.9999
(red).

The period of the sn-wave is given by T = 4K, where

K =

∫ π/2

0

dϕ√
1− k2 sin2 ϕ

, (31)

is the complete elliptic integral of the first kind [20].
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For k2 � 1 and k′2 = 1− k2 � 1, applying the Maclaurin Series in k2 and k′2 [20], we obtain
(setting, for simplicity, ξ0 = 0)

u = k sin ξ − k3

4
(ξ − sin ξ cos ξ) cos ξ +O(k5), (32)

u = tanh ξ − k′2

4
(ξ + sinh ξ cosh ξ)sech2ξ .+O(k′4). (33)

In particular, for k = 0, we obtain u = 0. This solution corresponds to the elliptic point located
at the center of the phase space portrait of Fig. 8. When k = 1, the sn-waves become the kink

u = tanh(ξ − ξ0), (34)

with the boundary conditions: u(±∞) = ±1. In Fig. 8b, the corresponding orbit is presented
by the separatrix (red curve).

(a) (b)

Figure 10. Kink. (a) analytical solution, σ = 0.25, ε = −0.25. (b) numerical solution,
σ = 0.625, ε = 0.141. Parameters: u0 = 0.5, κ = 0.

A topological classification of kinks is given in terms of homotopy group [21]. The topological
charge, π0, of kink is determined by the magnitude, nz of the polarization vector at the ends of
the MT:

π0 =
1

2
(nz(+∞)− nz(−∞)). (35)

To change the topological charge one needs to overcome the potential barrier, proportional to
the size of the MT (formally, infinite potential barrier).

We remark at this point that such one-dimensional solitions have been considered in
connection with dissipation-free energy and signal transduction in phenomenological one-
dimensional models of MT in [7, 8]. here such solutions have been derived from realistic three-
dimensional lattice models, entailing dipole-dipole interactions, whose physical importance has
been stressed above and in [8].

3.1.2. Spikes: κ = 0 A spike solution can be obtained as excitation of the ground state, ug.
To estimate energy carried by spike, we approximate it by a step function. Using Eq. (15), we
then obtain [10]

∆wsp = wg − wsp = −Jg1

Σ0
(u2
sp − u2

g)
2, (36)
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Figure 11. Spike: ε = 0.25, u0 = 0.5, σ = 0.25, κ = 0.

where usp is the height of the spike, and wg = −Jg1u
4
g/Σ0 is the energy density of the ground

state (see Eq.(16)).
The electric field produced by the spike can be estimated as [10], ∆Ez = Emax

z (u2
sp − u2

g)
2,

where Emax
z = Jg1

S is the maximum value of the electric field due to the permanent dipoles,
which is reached when all dipoles are aligned along the MT (in which ug = 1) The maximum
value of the electric field produced by spike ∆Ez ≤ ∆Emax

z , has been estimated in [10] as

∆Emax
z = Emax

z (1− u2
g)

2 = Emax
z cos4 Θ0 ≤ Emax

z . (37)

where Θ0 denotes the angle between the permanent dipole and axis orthogonal to the surface of
the MT. Notice that the maximum magnitude of the electric field produced by spike is bounded
by Emax

z . As discussed in the literature [16], in the ground state the orientation of the dipoles
with respect to the surface of the MT can be defined by Θ0 ≈ 29 o. Substituting these data
into Eq. (37), we obtain the following estimation for the electric field produced by the spike:
∆Emax

z ≈ 0.6Emax
z . To evaluate Emax

z , we use data available for the electric field inside of
the MT: Ez ∼ 105 ÷ 108 V/m [7]. Then, we obtain the following estimate for the electric field
produced by the spike: ∆Emax

z . 0.6 ·(105÷108) V/m . The localized spike solution is presented
in Fig. 11. In the phase space portrait of Fig. 8, the corresponding orbit is indicated by the red
curve on the right. We note that the spike solutions can be important candidates for information
transfer by the MTs.

3.2. Solutions with Θ = π/2 - Chiral solitons
In this section, we study solutions related to the paraelectric ground state. We seek a solution
of the non-linear Lagrange equations (14) in the form: Θ = π/2. Substituting Θ = π/2 into Eq.
(21), we obtain

(
u2

0 − sin2 Φ
)(dΦ

dξ

)2

+ η sin2 Φ + κ cos Φ = const, (38)

Introducing a new function, uϕ = sin Φ, one can recast this equation as,(duϕ
dξ

)2
+ U(uϕ) = 0, (39)

where

U(uϕ) =

(
ε− ηu2

ϕ − κ
√

1− u2
ϕ

)
(1− u2

ϕ)

u2
ϕ − u2

0

. (40)
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(a) (b)

Figure 12. Phase portrait of the system (39) in the plane (uϕ, Pϕ): (a) η = 0.1, κ = 0.75; (b)
η = 0.75, κ = 0.25. Parameters: u0 = 0.5.

Figure 13. Phase portrait of the system (39) in the plane (uϕ, Pϕ): η = 0.25, κ = 0, u0 = 0.5.

We denote by ε the constant of integration in Eq. (12). “Chirality” is a topological charge
described by the relative homotopy group and defined as [21]:

χ =
1

π

∫ ∞
−∞

dz ez · (n×
((∂n

∂z

))
=

1

π

∫ ∞
−∞

dz sin2 Θ
∂Φ

∂z
. (41)

Taking into account that in our case Θ = π/2, we obtain χ = 1
π (Φ(+∞) − Φ(−∞)), Chiral

solitons in the phase space are presented by orbits located in the interval (−u0, u0). (See Figs.
12 and 13.) We remark that Chiral solitons can produce quantized charge transport across the
MT that is topologically protected and controllable by the soliton’s chirality.

Suppose that κ = 0, then taking the constant of integration as, ε = ηu2
0, one can rewrite (12)

as: (duϕ
dξ

)2
= η(1− u2

ϕ). (42)
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The analytical solution of this equation is given by

uϕ = sin(
√
η(ξ − ξ0)) , (43)

which is a chiral soliton. The corresponding orbit is represented in Fig. 13 by the separatrix
(red curve).

3.3. Two-dimensional solutions
The solutions presented in previous sections have the form: Θ = Θ(z + νϕ − vt) and
Φ = Φ(z + νϕ − vt). Thus, they describe two-dimensional nonlinear waves propagating on
the MT surface along the z-direction. However, in realistic cases one may have fully two-
dimensional solutions propagating on the MT surface. In Fig. 14a,b, the static helicoidal
sn-solution is depicted. In Fig. 14c, the helicoidal sn-wave is presented. Finally, in Fig. 15, the
solution describing kink moving in the z-direction, is depicted. All parameters are given in the
corresponding figure captions. In addition one has

(u2
0 − cos2 Θ)

(dΘ

dξ

)2
− (σ − cos2 Θ)2 + κ sin Θ = const. (44)

(a)

(b)

(c)

Figure 14. Sn-solutions. (a) u vs z (v = ν = 0); (b) Density plot of the helicoidal static snoidal
solution v = 0. Density plot of the propagating sn-wave along the MT (ϕ = conts). Parameters:
v = 0.1m/s, ν = 100 nm, C = 0.5, k = 0.25.

This completes the classiifcation of the soliton solutions arising from the non-linear dynamics
of the pseudospin model of MT.
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Figure 15. Propagating kink excitation. Parameters: v = 0.1m/s, ν = 100 nm, C = 0.5,
k = 0.25.

4. Conclusions and outlook
In this talk, I reviewed some recent work on soliton solutions arising in the non-linear dynamics
of dimer dipoles in MicroTubular bio-systems modelled by pseudo spin non-linear σ-models.
The presence of such solitons, if confirmed in realistic MT systems [22], would be an important
step towards our understanding of energy and signal transduction by these biological entities.
Solitons may transport energy and information in a dissipation-free and thus efficient way for
the complex biological processes MT are associated with.

Q

B

A

Figure 16. A MT arrangement in cell as a ‘logic’ XOR gate. Left panel: the biological
arrangement. Right panel: the electronic XOR gate for comparison.

In addition to efficient energy transport, the presence of solitonic structures in MT, may imply
their rôle as biological gates [9] (See Fig. 16, left panel). Although MT do not naturally branch,
nevertheless the analogue of a ‘logic’ XOR gate (see Fig. 16, right panel) by MT arrangements
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in cells can be provided due to the existence of Microtubule Associated Proteins (MAP) that
connect the various MTs in a network. Once a soliton is formed along one MT, an “active
MAP” (yellow colour in left panel of Fig. 16) can transport it from one MT to another. In
the MT arrangement depicted on the left panel of Fig. 16, an XOR logic gate can be realised
provided the “0” entry is represented by the absence of a soliton and the “1” entry by the
presence of a soliton. In this arrangement, MT (a) acts as the “Input” MT, whilst MT (b) is the
“Output” MT. (c) is a MAP transmitting a soliton, while (d) represents a “quiet” MAP (green
coloured MAPs). MT (a) has two solitons travelling (yellow colour), encountering two MAPs
(yelow coloured MAPs) that transmit both solitons to MT (b). In this hypothetical scenario,
the solitons arrive out of phase at MT (b) and cancel each other out. The truth table for XOR
reads: 0, 0 → 0; 0, 1 → 1; 1, 0 → 1, 1, 1 → 0. and in this case is realized by MTs if the MAPs
are arranged in such a way that each can transmit a soliton independently but if they both
transmit, the solitons cancel out.

The above ideas are of course speculative, but it is possible that represent reality in in vivo
situations involving MT networks. Above we have treated the solitons as classical solutions, and
in fact the XOR gate rôle of MT arrangements can be due to classical physics. However, we have
already mentioned above that in ref. [8] the solitons have been viewed as macroscopic quantum
coherent states, which may survive long enough so that certain processes such as energy and
signal transport along moderately long MT of length of a few µm can take place. In [8] we
have discussed the conditions under which such a situation can be realised in nature, provided
sufficient isolation of the MT dimer system from thermal and in general environmental losses
occurs. Strong dipole-dipole interactions between the dipole moments of water molecules in the
interior of the MT and the electric dipoles of the MT surface dimers have been argued to provide
such conditions. In view of the logic gate representation of MT arrangements, then, it is evident
that such a binary information system can provide the basic substrate for quantum information
processing inside a (not exclusively neural) cell. In a typical MT network, there may be about
1012 tubulin dimers. Such a number is macroscopic, and one is tempted to express doubt as
to whether, in realistic biological situations, such macroscopic populations of ‘particles’ can be
entangled quantum mechanically, with the entangled state being maintained for a relatively
long period of time. However, in atomic physics the experiments of ref. [23] have demonstrated
experimentally the existence of long-lived entangled states of macroscopic populations of Cs gas
samples, each sample containing 1012 atoms. In such experiments entanglement is generated via
interaction with pulses of light. Thus it is not impossible that in vivo one has, under certain
circumstances specified above, similar entanglement of MT coherent quantum states.
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Mathematical and Computer Modelling 41 1055
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