This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Fast interaction of atoms with crystal surfaces: coherent lighting

Published under licence by IOP Publishing Ltd
, , Citation M.S. Gravielle 2017 J. Phys.: Conf. Ser. 875 012006 DOI 10.1088/1742-6596/875/2/012006

1742-6596/875/2/012006

Abstract

Quantum coherence of incident waves results essential for the observation of interference patterns in grazing incidence fast atom diffraction (FAD). In this work we investigate the influence of the impact energy and projectile mass on the transversal length of the surface area that is coherently illuminated by the atomic beam, after passing through a collimating aperture. Such a transversal coherence length controls the general features of the interference structures, being here derived by means of the Van Cittert-Zernike theorem. The coherence length is then used to build the initial coherent wave packet within the Surface Initial Value Representation (SIVR) approximation. The SIVR approach is applied to fast He and Ne atoms impinging grazingly on a LiF(001) surface along a low-indexed crystallographic direction. We found that with the same collimating setup, by varying the impact energy we would be able to control the interference mechanism that prevails in FAD patterns, switching between inter-cell and unit-cell interferences. These findings are relevant to use FAD spectra adequately as a surface analysis tool, as well as to choose the appropriate collimating scheme for the observation of interference effects in a given collision system.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/875/2/012006