This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

A correlation of long term effects and radiation quality in the progeny of bystander cells after microbeam radiations: The experimental study of radiotherapy for cancer risk mitigation

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation N Autsavapromporn et al 2017 J. Phys.: Conf. Ser. 860 012026 DOI 10.1088/1742-6596/860/1/012026

1742-6596/860/1/012026

Abstract

The goal of this study is to investigate the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of delayed stressful effects in the progeny of bystander human skin fibroblasts cultures (NB1RGB). Briefly, confluent NB1RGB cells in the presence and absence of gap junction inhibitor (AGA) were exposed to ionizing radiation (IR) with a different linear energy transfer (LET) either 5.35 keV X rays (LET ∼6 keV/μm) or 18.3 MeV/u carbon (LET ∼103 keV/μm) microbeam radiations. Following 20 populations post-irradiation, the progeny of bystander NB1RGB cells were harvested and assayed for several of biological endpoints. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to low-LET X rays showed the persistence of oxidative stress and it was correlated with the increased mutant fraction. Such effect were not observed after high-LET carbon ions. Interestingly, inhibition of GJIC mitigated the toxic effects in the progeny of bystander cells. Together, the results contribute to the understanding of the fundamental radiation biology relating to the high-LET carbon ions to mitigate cancer risk after radiotherapy. Furthermore, GJIC be considered as a critical mediator in the bystander mutagenic effect.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/860/1/012026