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Abstract. In the present paper, the new fractional-differential dependences of cycles to failure 

for a given initial crack length upon the stress amplitude in the linear fracture approach are 

proposed. The anticipated unified propagation function describes the infinitesimal crack length 

growths per increasing number of load cycles, supposing that the load ratio remains constant 

over the load history. Two unification fractional-differential functions with different number of 

fitting parameters are proposed. An alternative, threshold formulations for the fractional-

differential propagation functions are suggested. The mean stress dependence is the immediate 

consequence from the considered laws. The corresponding formulas for crack length over the 

number of cycles are derived in closed form. 

1.  Introduction 

The functional relation between the loading properties, stress gradient and the physical time-depending 

characteristics of materials are essential for the statistical fatigue analysis and analytical evaluation 

number of the cycles to failure [1-2]. The traditional evaluations concepts based on the Palmgren-

Miner’s rule of damage accumulation, rain-flow counting of time-dependent loads, Wöhler curve and 

Basquin equation, Paris-Erdogan law and diverse extensions of the fracture and damage mechanics 

approaches [3]. The book [4] reviews the numerical treatment of fatigue microscopic crack propagation 

together with their implementation in fatigue-life prediction models. It was recently pointed out that 

fracture and fatigue are not scale invariant [5]. An attempt to account the scale-invariance in the 

traditional fatigue approach is performed in this paper. The approach is based on the introduction of 

fractal length that divides the crack propagation into two characteristic scales.  

There are three stages of fatigue fracture commonly distinguished: initiation, propagation, and final 

rupture [6-7]. The first stage (stage I) of fatigue is referred to as initiation. Initiation is probably the most 

complex stage of fatigue fracture. The most significant factor about the initiation stage of fatigue fracture 

is that the irreversible alterations in the metal are caused by cyclic shear stresses. The accumulation of 

microscopic faults over a large number of load applications, leads to cumulative damage. At the loca-

tion of a severe stress concentration, the number depends on the geometry of the part as well as on 

environmental, stress, metallurgical, and strength conditions, as will become apparent. During the stage 

I, the spread of fatigue crack per unit cycle decelerates smoothly with number of cycles and the process 

approaches its second stage.  

The second stage of fatigue is known as crack propagation (stage II). The propagation stage of fatigue 

causes the microscopic crack to change direction and grow perpendicular to the tensile stress. The 

second, or propagation, stage of fatigue is typically the most readily recognizable area of a fatigue 

fracture. The Paris law describes the stage II propagation law [8]. The traditional form of Paris law 

pronounces the spread of fatigue crack per unit cycle as a power function of the range of stress intensity 

http://creativecommons.org/licenses/by/3.0


2

1234567890

6th International Conference on Fracture Fatigue and Wear  IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 843 (2017) 012022  doi :10.1088/1742-6596/843/1/012022

 

 

 

 

 

 

factor. Towards the end of the stage II, the spread of fatigue crack per unit cycle begins to accelerate 

smoothly with number of cycles and the process turns to the third stage.  

The final, third stage of fatigue is the final rupture (stage III). As the propagation of the fatigue crack 

endures, progressively sinking the cross-sectional area of the test specimen, it eventually deteriorates 

the part so significantly that final, broad fracture occurs with a couple of load cycles. The fracture mode 

may be either ductile (with a dimpled fracture surface) or brittle (with a cleavage, or intergranular, 

fracture surface). Occasionally occur the combinations of these modes, depending upon the metal 

concerned, the stress level and the environment. In the course of the stage III, the spread of fatigue crack 

per unit cycle progressively accelerates with each cycle.  

Numerous load damage models, which extend the celebrated Paris and Erdogan propagation law, 

were proposed since the 1970s. The article [9] reviews the articles focused on the prediction of fatigue 

properties of structures under variable amplitude loading. The reliability and accuracy of prediction 

models and the physical concept of fatigue damage was discussed. The reviewed fatigue life models 

were based on the scientific and engineering knowledge about fatigue of material and structures under 

constant and variable amplitude loading.  

The near-threshold deviation of the common propagation law was suggested by [10]. The observed 

rapidly increasing growth towards ductile tearing was accounted. The brittle fracture correction of the 

power law was proposed in the cited article in the analytical form.  

In the work [11] several combinations of high and low amplitude of stress intensity factors values 

were studied. A similar approach of for transition region between high and low amplitude of stress 

intensity factors was proposed in [12]. 

A more general ‘‘unified law’’ accounts certain deviations from the power-law regime [13]. The 

implemented extension of the Paris law for crack propagation results in the generalized Wöhler fatigue 

curves.  

2.  The propagation laws for cyclic loads  

The crack propagation is calculated as a function of the range of the stress intensity factor: 

 minmax KKK   . 

The factors in this equation are 

maxK  the maximum stress intensity factor and 

 minK  the minimum stress intensity factor per cycle. 

The common form of Paris' law quantifies the fatigue life of a specimen for a given particular crack 

size a . The range of stress intensity factor reads: 

aYK  . 

The range of stress intensity factor depends on: 

minmax     the stress range,   

max     the maximum stress, 

min     the minimum stress per cycle 

Y    a dimensionless parameter that reflects the geometry. 

The parameter Y possesses the value 1 for a center crack in an infinite sheet. Hereafter, this value is 

assumed for briefness: .1Y   

In the present paper the traditional form for propagation law is implemented: 

 KU
da

dn
c    or   aU

da

dn
c  .    (1) 

The coefficients in Eq. (1) are:  

 Rcc     the material constant for a given stress ratio R ,  
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max

min 
K

K
R    the stress ratio of cyclic load, 

21

1

2

minmax K

R

RKK
Km







   the mean value of stress intensity factor. 

The propagation function  KU  describes the infinitesimal crack length growths per increasing 

number of load cycles n , supposing that the load ratio R  remains constant over the load history. It is 

presumed that the cracks with the initial length  exist in the material. The cycle count starts with the 

beginning of crack propagation from its initial length:  

.0
a

n           (2) 

Thus, the range K and the mean value mK  of stress intensity factor remain constant. The variations 

of range K and the mean value mK  of stress intensity factor over the load history could be accounted 

by applications of damage accumulation theories [14-15].  

3.  Fractal crack equation (type I)  

The propagation function  KU  of the first type 

  

  
 

  ,,1

1

1

pKKU
c

KU
anL

da

nd

da

dn
anL













      (3) 

where the stress intensity factor, corresponds to the transition to VHCF regime is 

  ,        (4) 

  is the characteristic transition length.  

The method is used to calculate the fractional derivative using the Davison-Essex definition [19], 

that is, first differentiate n  times, and then integrate n times: 

 
 







a

n

n
n

dt
dt

tnd
ta

nda

and

0

1 )(1)( 






,     (5) 

where n  smallest integer greater than or equal to a number   , n . This definition handles 

differentiation orders 1 .  

At first assume that 10  . The definition of the fractional derivative in the equation (3) leads to 

the integral-differential equation: 

 
 

 
 

0
)(

1

2/2

0

12












 c

a
dt

dt

tnd
ta

da

dn
pa

n

n 



 



     (6) 

Application of the Laplace transform to the equation (6) leads to the following linear algebraic 

equation  
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          0~1
2

1

)(

1

1212

0
2

2
1

2

2/2

0

12







































snsscsnc
p

s

c

a
dt

dt

tnd
ta

da

dn

pp

pa

n

n














L

    (7) 

in terms of a Laplace transform of the function     ansn L~  with an unknown constant 0n . The 

solution of the equation (7) delivers the transformed function: 

 
 

  s

n

ss

p
s

c
sn

pp

0

12

2
2

1
2

2
1

1~ 






















.      (8) 

The application of Bromwich integral inverse Laplace transform of the function (8) results the 

solution of fractional differential equation (3): 

    
 

     21,111,1211,1

022

2

12
1

1,1

,

,
2

3

2
,1

2
1

2
,

2

3

2

exp

2

3

2

ananaaN

n
pappap

a

p
c

snan

p

-












































































L

  (9) 

One limit case corresponds to an infinite scaling parameter : 

   
 

 
 

0
)(

1

2/2

0

122/2
1 












 c

a
dt

dt

tnd
ta

c

a

da

nd
pa

n

np














 .   (10) 

The application of the Laplace transform to the Eq. (10) and leads to the transformed function  

   
s

np
s

c
sn

pp

011
2

2
1

2

2
1

1~ 















 



 .     (11) 

The inverse Laplace transform of (11) provides the expression for the asymptotic limit of the function 

(9) for an infinite scaling parameter : 

 
 


































2

1

2
2

1

1

2

1
2

212,1

2

3

2

1
2

,
pp

p

aa
p

c

p

aaN 



.     (12) 

The other limit case corresponds to an infinitesimally small scaling parameter  : 

 
0

2/2





c

a

da

dn
p


        (13) 

with an elementary solution 
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 
 
  














2
1

1
2

1

2

2
2

123,1
2

2
,

pp

p

aa
pc

aaN


.      (14) 

4.  Fractal crack equation (type II)  

The second formulation presumes the application of the fractional differentiation operator 
2L  to the 

right side of the Eq. (1): 

































c

K

da

d

c

K

c

K
L

c

K
L

da

dn pppp




22 , .    (15) 

The definition of the fractional derivative leads an ordinary inhomogeneous differential equation of 

the first order: 

   
 

 
0

2/1

2/1
2/22/2









c

a

p

p

c

a

da

dn
pp 

 





.     (16) 

The Laplace transform (16) brings the following expression  

     
s

n
ss

c

p

sn
pppp

02
2

2
22

2
2

2
2

1
~ 

























 

,    (17) 

which results in the formula for the number of cycles 

 
   

     .,

,

2
2

2
2

2
1

11,221,2121,2

0

2
1

2
22

1
2

2

1,2

ananaaN

n
p

a

p

a

c

p

an

pppp






































































    (18) 

The limit case corresponds to an infinite scaling parameter : 

 
 

 
0

2/1

2/1
2/2









c

a

p

p

da

dn
p

 


       (19) 

with the corresponding solution 

   





































2
1

2
2

1

1
2

2

212,2

2
2

2
1

,
ppp

aa
p

c

p

aaN









.    (20) 

The other limit case corresponds to an infinitesimally small scaling parameter   leads once again to 

the equation (13) with an already known solution 

    123,2123,1 ,, aaNaaN  . 

5.  Effect of stress ratio 
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The load ratio is defined as the ratio of the algebraically minimum over the maximum load, Eq. (1). The 

experiments demonstrate that the load ratio affects the fatigue crack growth and threshold behaviour. 

Namely, the fatigue crack propagation rate and threshold value vary with the applied load ratio (Walker, 

1970). If the load ratio is positive, the experiments reveal that the necessary stress intensity factor range 

for growth decreases with increasing positive values. In the region of the negative load ratio the required 

stress intensity factor range for growth (threshold stress intensity range) decreases as load ratio 

decreases. Reaching a definite negative value, known as saturation point, the required stress intensity 

factor range for fatigue crack growth stabilizes.  

Consider now the variation of load ratio for the proposed propagation laws. The closed form solution 

for the cycles to failure for a given initial crack length upon the stress amplitude could be found for 

given load ratio. 

 
Fig. 1 The plot of the relations between the crack growth rate   cKUdadn I //   and the range of stress intensity 

factor K  for different materials [17,18] 
 

Instead of an empirical approach, in this paper we use the equations to derive the influence of the 

stress ratio on the crack growth rate explicitly. For this purpose consider two harmonically varying loads 

with equal amplitude, but with the different mean values. The mean values and amplitudes are assumed 

to be positive, such that: 

0,0,0 *  KKK mm
.      

Both loads lead to the harmonically varying stress intensity factors. The harmonically varying stress 

intensity factors correspondingly are: 

   tKKtK m sin
2
1 ,    tKKtK m sin

2
1**  .   (21) 

For both considered cyclic loads the ratios are equal correspondingly to:  

KK

KK
R

m

m

2
1

2
1




 ,   

KK

KK
R

m

m

2
1*

2
1*

*




 .   (22) 

Consider at first the positive load cycles  

    0,0 *  tKtK .  

For the positive load cycles the stress ratios are in the ranges: 

AlZnMgCu0,5 
 

X35NiCrMo31 
 

Ti6Al4V 
 

 

 

 

7075 

(24h, 100°C) 

X-7075 

(48h, 180°C) 

X-7075 

(24h, 100°C) 
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11  R ,    11 *  R .   (23) 

 

The damage caused by the varying load depends linearly upon the stress intensity factor in the power 

p  along the cycle. Consequently, the relation between fatigue coefficients, which correspond to the 

different stress ratios  Rc  and  *Rc , reduces to: 
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The integrals in (19) are expressed in term of the Meijer G- function [20]:  
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The parameters of Eq. (24) are: 
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Consequently the relation between fatigue coefficients for two different load ratios is: 
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6.  Threshold-limited formulations for propagation functions  

For some alloys there is a theoretical value for stress amplitude below which the material will not fail 

for any number of cycles. In this paper the method of representation of crack propagation functions 

through appropriate elementary functions is employed. The choice of the elementary functions is 

motivated by the phenomenological data and covers broad region possible parameters. With the 

introduced crack propagation functions differential equations describing the crack propagation are 

solved rigorously. The resulting closed form solutions allow the evaluation of crack propagation 

histories on one side, and the effects of stress ratio on crack propagation, on the other side. 

Two new unified functions (type I and type II) were proposed in the paper (Kobelev, 2017). The 

functions were suggested in the form that incorporates the three commonly accepted stages of fatigue. 

The advantage of the newly proposed functions is the closed form solution of crack propagation.  

The simplified representation of unified propagation function for the damage growths per cycle 

accounts the Paris propagation law together with transition regions at high and low amplitudes of stress 

intensity factors: 
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12 m  is the exponent at the short-term limit,    

11 m  is the endurance limit exponent.      

The function (27) delivers the closed form solution of the ordinary differential equation with the 

initial condition (2):  

  ,,ann   .        (28) 

 
Fig. 2 The dependencies between the cycles to failure N for the given initial crack lengths upon 

the stress amplitude   (s-N-curve, left) and cycles to failure N for the given stresses upon the 

length of crack (a-N-curve, right) 

 

Precisely, the function   ,,an  delivers the number of cycles for growth of the crack length from 

the initial value  to the given value a , assuming that the stress range   and mean stress 

 
2

minmax 



m         (29) 

remain constant.  

From the equation (1) two ultimate crack sizes could be determined immediately. Firstly, the value:  

22

22  Ka   

is the critical crack length at which instantaneous fracture will occur. Secondly, the value:  

22

11  Ka    

is the initial crack length at which fatigue crack growth starts for the given stress range. The number of 

cycles to failure at 1a  is infinite. For a finite number of cycles before fracture the initial crack 

length   must satisfy the condition: 
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The relations between the crack growth rate 
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and the range of stress intensity factor K  for simulated materials are shown on the Fig.1. The 

endurance and short time threshold exponents were experimentally acquired [17], alloys 

AlZnMgCu0,5, Ti6Al4V, X35NiCrMo31) and [18], aluminum alloys X-7075 (180°), X-7075 (100°), 

7075 (100°).  

 
Fig. 3 The dependencies between the cycles to failure N for the given initial crack lengths upon 

the stress amplitude   (s-N-curve, left) and cycles to failure N for the given stresses upon the 

length of crack (a-N-curve, right) 

 

The solution of the ordinary differential equation (27) with the corresponding initial condition 

delivers closed form analytical expression for the remaining number of cycles to fracture: 

      ,~,~,, nanan  ,       (30) 

where the auxiliary functions are: 
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In the expression (31) appears the Meijer G- function [19]. The following example illustrates the 

behaviour of the metallic material with the unified propagation function (27). The diagrams that express 

the dependence of cycles to failure, S-N curves are presented on the pictures on left side of Fig.2 and 

Fig.3. The same initial length of the crack was assumed for definiteness in all cases m410 . The 

stress intervals for calculation depend on threshold stress intensity factors:  

21   ,   11 K ,   22 K . 

The dependencies of crack lengths on cycles, a-N curves are drawn on the right pictures. The number 

of cycles was calculated as the function of length of the crack in the interval  

mam 27 1010   . 
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The NSa surface N-S and curves and a-N curves are shown on the Fig.2 for aluminium alloys X-

7075 (180°), X-7075 (100°), 7075 (100°) from [17]. The S-N curves and a-N curves are displayed on 

the Fig.3 for aluminium alloy AlZnMgCu0,5, titanium alloy Ti6Al4V, and steel X35NiCrMo31 [18].  

7.  Conclusion 

The paper introduces the closed form analytical expression for crack length over number of cycles. Two 

new fractional-differential functional dependences express the damage growth per cycle are introduced. 

These functions allow the unification of different fatigue laws in a single expression. The unified fatigue 

law provides closed form analytical solutions for crack length upon the mean value and range of cyclic 

variation of stress intensity factor. The solution expresses the number of cycles to failure as the function 

of the initial size of the crack and eliminates the solution of nonlinear ordinary differential equation of 

the first order. The explicit formulas for stress against the number of cycles to failure are delivered for 

both proposed unified fatigue laws.  

The different common expressions, which account the influence of the stress ratio, are immediately 

applicable. For the proposed unified propagation functions, the ranges for the stress load factor are 

extended using the introduction of effective stress intensity. The solution leads to the effective stress 

intensity factor range, effective mean value of stress intensity factor and effective stress ratio.  

The proposed methods are applicable for the modeling of tribological effects on fatigue. Fretting 

fatigue is an outcome involving different influences. The major factors that effect fretting fatigue are 

slip amplitude, coefficient of friction, shear load and loading phase difference [21-24]. In the recent 

paper [25] study, three numerical models were introduced for simulation the effect of both in phase and 

out of phase loading on contact stresses and damage initiation locations. In the paper [25] was pointed 

out that phase difference affects the shear traction and tensile stress profiles at the contact interface, 

whereas no significant effect is observed on convergence efficiency. The methods, which proposed in 

the currect article, could be applied for the simulation of the fretting fatigue processes. 

The proposed method is also appropriate for investigation of fatigue behaviour compression springs 

at a very high number of cycles [26]. The reported variation of the slope in S-N diagram could be 

explained by the transition to a fractal fracture regime [27,28]. The corresponding models of fracture 

under static load conditions were proposed in [29]  
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