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DM-induced frustration of the weakly coupled
Heisenberg chains

Wen Jin and Oleg A. Starykh
Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA

E-mail: wen.jin@utah.edu

Abstract. We present theoretical procedure for estimating interchain exchange coupling J ′

between antiferromagnetic spin-1/2 Heisenberg chains with frustration due to Dzyaloshinskii-
Moriya (DM) interaction characterized by DM vectors Dy which are uniform within each chain
y, but staggered between adjacent chains, Dy ∼ (−1)yD. Under a magnetic field h ‖ D we
obtain a field-temperature phase diagram which favorably agrees with the one experimentally
observed. We then apply chain mean-field (CMF) technique to calculate interchain exchange J ′

from the critical field hc at which the transition between the collinear spin-density wave and the
cone states takes place. The CMF calculations are found to provide good physical description
of the experimental measurements for the wide range of D/J ′.

1. Introduction
Many experimental realizations of Heisenberg spin chain materials have become available
over recent years. Here we present comparative analysis of two new interesting materials
– K2CuSO4Cl2 and K2CuSO4Br2 [1, 2] – which represent an interesting and novel case of
Heisenberg spin chains with uniform Dzyaloshinskii-Moriya (DM) interactions.

Both materials are believed to be described by the Hamiltonian (1) below and are
characterized by a different set of parameters (J,D, J ′), where J is the dominant intra-chain
exchange, D is the DM interaction strength and J ′ is the interchain spin exchange. Despite close
structural similarity, the two materials are characterized by different h− T phase diagrams, as
has been established by experiments in Prof. Zheludev’s group in ETH [1–3]. That difference is
attributed to the different D/J ′ ratio – according to Ref. [1] DM interaction is relatively weak
in K2CuSO4Cl2, so that D/J ′ ∼ 1, while K2CuSO4Br2 can be characterized as a strong DM
material with D/J ′ ∼ 10.

As we describe below and show in more details elsewhere [4], large D/J ′ ratio places Br-
based material into a novel category of materials where interchain interaction between spins
from adjacent chains is strongly frustrated by the uniform in-chain, but staggered between
chains, DM interaction. This unique geometry of DM interactions makes K2CuSO4Br2 somewhat
similar to the honeycomb iridates family Li2IrO3 an incommensurate magnetic order of which
is characterized by unusual counter-rotating spirals on neighboring sublattices [5]. This kind of
frustration requires theoretical re-evaluation of the kind and mechanism of the eventual two- (or,
three-) dimensional magnetic order that develops in the system at sufficiently low temperature.
Our work provides such an analysis.
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A variety of experimental techniques has been employed to characterize the parameters of
K2CuSO4Cl2 and K2CuSO4Br2 [1, 2]. The dominant intra-chain exchange J has been estimated
using the empirical fitting function of Ref. [6] to fit the uniform magnetic susceptibility data as
well as by fitting the inelastic neutron scattering continuum, a unique feature of the Heisenberg
spin-1/2 chain, to the Müller ansatz [7]. DM vector D has been measured by electron spin
resonance (ESR) [2, 8]. However the interchain exchange interaction J ′ has been estimated
from the chain mean-field theory fit based on Monte-Carlo improved study in Ref. [9]. This
fit, however, completely neglects crucial for understanding of these materials DM interactions
and moreover assumes that spin chains form simple non-frustrated cubic structure. The second
assumption is not justified as well. Inelastic neutron scattering data show that the interchain
exchange between spin chains in the a− b plane is at least an order of magnitude stronger than
that along the c-axis, connecting different a − b planes. As a result, it is more appropriate to
consider the current problem as two-dimensional whereby spin chains, running along the a-axis,
interact weakly via J ′ � J directed along the b-axis.

This is the geometry assumed in the present work. Using bosonization technique, we account
for the intra-chain DM interaction non-perturbatively, and describe the competition between the
cone and the longitudinal spin-density wave (SDW) orders. The interchain J ′ is estimated from
the value of the zero-field critical temperature Tc, which is calculated with the help of the chain
mean field (CMF) approximation [10]. The obtained Tc’s are found to be in a good agreement
with experimental measurements.

2. Hamiltonian
We consider weakly coupled antiferromagnetic Heisenberg spin-1/2 chains subject to a uniform
Dzyaloshinskii-Moriya (DM) interaction and an external magnetic field. The system is described
by the following Hamiltonian,

H =
∑
x,y

[JSx,y · Sx+1,y + J ′Sx,y · Sx,y+1] + D ·
∑
x,y

(−1)ySx,y × Sx+1,y − h ·
∑
x,y

Szx,y, (1)

where Sx,y is the spin-1/2 operator at site (x, y). J and J ′ denote isotropic intra- and inter-
chain antiferromagnetic exchange couplings as shown in Fig. 1, and we account for interactions
between nearest neighbors only. The inter-chain exchange is weak, of the order of J ′ ∼ 10−2J .
DM interaction is parameterized by the DM vector D = Dẑ, direction of which is staggered
(note the factor (−1)y) between adjacent chains. Importantly, vector D is uniform within a
given y-th chain. h = gµBB is an external magnetic field along DM interaction.

x + 1xx - 1

y + 1

   y 

y - 1

J’

J
D

- D

Figure 1. Sites, exchange couplings and
DM vectors on coupled spin chains. Intra-
chain bonds J (thick lines along x̂), inter-
chain bonds J ′ (dashed lines along ŷ), and
J ′ � J . DM vectors on neighboring chain
have opposite direction, either point into or
out off paper.

2.1. Bosonization
In the low-energy continuum limit, Hamiltonian is expressed by bosonization [11–13],

Hchain = H̃0 + H̃bs + H̃inter, (2)
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where H̃0 has quadratic form in terms of abelian bosonic fields φ, θ (see details in Appendix
A), the Zeeman and DM interaction terms are absorbed in H̃0 by linear shifts of fields φ and
θ, correspondingly. The harmonic Hamiltonian is perturbed by chain backscattering H̃bs and
inter-chain H̃inter interactions, which read

H̃bs =
∫
dx
{
πvyB(J+

RJ
−
L e
−i2tφx + h.c.) + 2πvyzJzRJzR

}
, tφ ≡ h/v, (3)

and H̃inter = Hcone +Hsdw, where

Hcone = c1

∫
dx cos[β(θy − θy+1) + 2(−1)ytθx], Hsdw = c2

∫
dx cos[2π

β
(φy − φy+1)]. (4)

The coupling constants are,
c1 = J ′A2

3, c2 = J ′A2
1/2. (5)

v ' Jπa/2 is the spin velocity, a is lattice constant and tθ ≡ D/v. JL(x) and JR(x), are the
uniform left and right spin currents, which are defined in Appendix A. The parameter β = 2πR
is related to the “compactification radius” R in the sine-Gordon (SG) model. In the absence
of external field, the SU(2) invariant Heisenberg chain has 2πR2 = 1. The amplitudes A1 and
A3 have been determined numerically [14]. Hcone and Hsdw are the transverse and longitudinal
(with respect to the z-axis) components of inter-chain interaction respectively.

Table 1. Exchange constants for K2CuSO4Cl2 and K2CuSO4Br2: The intrachain exchange J is
obtained by thermodynamic and neutron measurements. D values are from ESR measurements.
Inter-chain exchange J ′ in fourth column is obtained by fitting data to Ref. [9]; inter-chain
exchange J ′ in the last column is obtained by fitting data to our CMF calculation in Eq. (7), (9)
and (10).

J D J ′ by Ref. [9] J ′ by CMF

K2CuSO4Cl2 3.1 K ∼ 0.04 K 0.031 K 0.073 K

K2CuSO4Br2 20.5 K 0.28 K 0.034 K 0.20 K

2.2. Two phase diagrams
We notice that there is a position dependent oscillation term in Hcone (4). The physical meaning
is that staggered DM interaction forces spins in neighboring chains to rotate in opposite direction
thereby frustrating the transverse inter-chain interaction. If the DM interaction is weak, D � J ′

(the case of K2CuSO4Cl2), oscillation in Hcone is slow and does not affect renormalization group
(RG) flow of the coupling constant c1. One finds that in the presence of external magnetic
field the more relevant Hcone dominates over the Hsdw and the ground state is cone state.
Minimization of the argument of cosine in Hcone has the effect of undoing the shift (A.9),
resulting in a commensurate cone configuration shown in Fig. B1. The temperature-field phase
diagram for this case is shown in Fig. 3.

If the DM interaction is strong, D � J ′ (the case of K2CuSO4Br2), Hcone oscillates rapidly
and averages to zero. As a result, the only inter-chain interaction that survives in this situation
is the Hsdw, which promotes incommensurate longitudinal SDW order. However, a cone-like
interaction between more distant chains can be generated by quantum fluctuations at low
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energies [15]. The simplest of such interactions is given by the transverse interaction between
the next-neighbor (NN) chains HNN (derivation of this term is presented in Ref. [4]),

HNN = −c3

∫
dx cos[β(θy − θy+2)], c3 = π

4
J ′2

D
A4

3t
2∆1−1
θ

Γ(1−∆1)
Γ(∆1) , (6)

where ∆1 ' 1/2 at low fields. This is an indirect exchange, mediated by an intermediate chain
(y + 1), and therefore its exchange coupling is rather weak, (J ′)2/D � J ′. Importantly this
interaction is not frustrated (spins in chains y and y+ 2 are rotating in the same direction) and
becomes more relevant with increasing magnetic field. HNN competes with Hsdw, and results in
a phase transition from SDW to coneNN, a cone-like incommensurate order induced by HNN,
at some critical field hc. For K2CuSO4Br2 it appears that hc ≈ 0.1 T [1]. This coneNN order
corresponds to θy − θy+2 = 2π/β, and the resulting spiral spin configuration is illustrated in
Fig. 2. The main role of DM interaction is to induce incommensurability, ∝ D/v, in the counter-
rotating spiral orderings in the neighboring spin chains, see Appendix B for more details.

Figure 2. Staggered magnetization of
the coneNN state, illustrated for a field
h ‖ D, where all spins are ordered in the
transverse plane. Red circles with arrows
indicates the procession direction of spins,
as one moves along each chain. Note that
the arrows’ direction alternates between
consecutive chains, owing to the staggering
of the DM vector. Blue and green curves
illustrate spin orientation in neighboring
chains.

3. Chain mean field calculation
The chain mean-field (CMF) approximation [10] allows one to calculate critical temperatures
for different possible instabilities desribed in Sec. 2.2. There are three states that need to be
considered, and we present the critical temperature for each state in the following. Details of
the calculations can be found in Ref. [10] and Appendix C.

3.1. Cone order
Ordering temperature for the cone state Tcone is the solution of equation,

1 = η1(2πTcone/v)2∆1−2 Γ(1−∆1)
Γ(∆1) |Γ(∆1/2 + iy)|4

[
cosh(2πy)− cos(π∆1)

]
, (7)

with
y = tθv

4πTcone
, η1 = c1

2πv . (8)

∆1 is the scaling dimension of N+, its value in the limits of zero and full magnetization is
shown in Table 2. The plot of Tcone for K2CuSO4Cl2 is shown as the blue curve in Fig. 3 –
this corresponds to Fig. 14 in Ref. [1]. Here we took the exchange constants J = 3.1 K and
D = 0.04 K from Table 1. By fitting the zero-field experimental value of Tcone (Tcone|h=0 =77
mK in Ref. [1]) to Eq. (7), where ∆1 = 1/2, we obtain J ′Cl = 0.073 K. The (approximately)
factor of 2 difference between our result and the previous estimate in Ref. [1] is caused by the
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Tcone
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Figure 3. Critical temperatures of SDW
(Tsdw, orange dashed line) and cone (Tcone,
blue solid) as a function of magnetization
M for K2CuSO4Cl2, with J = 3.1 K, D =
0.04 K in Table 1 and J ′Cl = 0.073 K from
Eq. (7) by setting Tcone|h=0 to 77 mK. The
order with the larger critical temperature is
the one realized. Here the phase diagram
consists of a single cone phase.

TconeNN
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0

50
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150
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Figure 4. Critical temperatures of SDW
(Tsdw, orange dashed line) and coneNN
(TconeNN, blue solid line) as a function of
magnetization M for K2CuSO4Br2, with
J = 20.5 K, D = 0.28 K are taken from
Table 1 , and J ′Br = 0.20 K from critical
field Bc ∼ 0.1 T (details in Sec. 4). Two
curves intersect at very low field, indicating
a SDW-coneNN phase transition.

accepted here two-dimensional geometry of the system, as described in the Introduction. Fig. 3
shows that Tcone is enhanced by field, and has a max close to 150 mK, which agrees well with
the experimental maximum of Tcone, see Fig. 14 in Ref. [1]. At high magnetic field Tcone starts
to decrease because orthogonal to the magnetic field spin projection (the amplitude A3 in (5))
decreases to zero on approaching the fully polarized phase.

Importantly, increasing the ratio D/J ′ suppresses Tcone, until at some critical value Dc/J
′ ≈

1.2, the solution of Eq. (7) disappears completely. Mathematically, this value is determined by
the maximum of the right-hand-side of Eq. (7) as a function of y [4]. Physically, strong DM
interaction (D/J ′ � 1) frustrates transverse interchain coupling, effectively turning it off. As a
result, the cone order is destroyed.

3.2. SDW order
The ordering temperature for SDW state is,

Tsdw = v

2π
[
η2

Γ(1−∆2)Γ(∆2/2)2

Γ(∆2)Γ(1−∆2/2)2

/(
1 + η2

Γ(∆2 − 1/2)√
π(1−∆2)Γ(∆2)

)]1/(2−2∆2)
, (9)

with η2 = πc2/v. The denominator compensates the non-physical divergence which occurs
when ∆2 → 1 near the saturation transition, see Table 2. Calculated Tsdw for K2CuSO4Cl2
and K2CuSO4Br2 are shown in orange in Fig. 3 and Fig. 4, respectively. In Fig. 3, Tsdw is
smaller than Tcone, so that SDW does not realize. However, in Fig. 4, Tsdw is dominant at small
fields h < hc. At higher h (higher magnetization M) TconeNN takes over, corresponding to the
SDW-coneNN phase transition.
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3.3. ConeNN
When it comes to coneNN state, its ordering temperature has a simple form, due to the fact
that HNN is free from oscillation and TconeNN is free from divergence (∆1 ≤ 1/2),

TconeNN = v

2π
[
η3

Γ(1−∆1)Γ(∆1/2)2

Γ(∆1)Γ(1−∆1/2)2

]1/(2−2∆1)
, (10)

with η3 = πc3/v. TconeNN for K2CuSO4Br2 is shown in Fig. 4, where values for J and D are
from Table 1. J ′Br = 0.20 K is obtained from the calculation in Sec. 4, where we describe that
for strong DM interaction the value of the interchain exchange J ′ can be obtained directly from
the transition field hc.

Table 2. Scaling dimensions ∆1/2 of transverse (N±) and longitudinal (N z) components of
staggered magnetization N at magnetizationM . The last two columns are the scaling dimensions
in the limit of zero and full polarization, respectively.

Operator Field Expression M = 0 M = 1/2

∆1 N± θ πR2 1/2 1/4

∆2 N z φ π/β2 1/2 1

4. Determination of J ′ from the critical field hc for strong DM interaction
Experiments on K2CuSO4Br2 have observed phase transition at a very small magnetic field
Bc ∼ 0.1 T [1, 2]. This corresponds to a critical field hc = 0.1343 K (with hc = gµBBc, and
set µ0 = 1). Clearly hc � J , which is consistent with our low-field consideration. Using field-
theoretical expression for the low-field magnetization, per site, m(h) of the spin-1/2 Heisenberg
chain [16]

m→ h

2πv [1 + 1
2 ln(J/h) ], (11)

then we can estimate the critical magnetization mc ' 7.29 × 10−4 at hc. Here, spin wave
v = πJ/2, and the predominant exchange J = 20.5 K. Scaling dimensions of operators N+

and N z are ∆1 and ∆2, respectively, with ∆1 = πR2, ∆2 = π/β2. In the limit of small
magnetization, the parameter 2πR2 is well fitted [10] by

2πR2 = 1− 1
2 ln(M0/m) , (12)

where M0 =
√

8/(πe). Therefore, the two scaling dimensions are modified by the magnetization
in opposite ways,

∆1 = 1
2
[
1− 1

2 ln(M0/m)
]
, ∆2 = 1

2
[
1− 1

2 ln(M0/m)
] . (13)

These relations are illustrated in Fig. 6.
We now use ordering temperatures of the two competing orders, Tsdw(∆2, J

′/J) in Eq. (9)
and TconeNN(∆1, J

′/J) in Eq. (10), together with Eq. (13) and experimental value of mc in order
to find the ratio Jp = J ′/J . The critical magnetization mc satisfies the condition,

Tsdw(mc, Jp) = TconeNN(mc, Jp). (14)
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Figure 5. Parameter 2πR2 as a function
of magnetization m, in the limit of small
m, illustrating Eq. (12).
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Figure 6. Two scaling dimensions ∆1/2 as
a function of magnetization m, in the limit
of small m, illustrating Eq. (13).

Fig. 7 shows that in the vicinity of the mc, which is denoted by the red dot in the plot, Jp
varies linearly with magnetization m. We find Jp = 0.01024, which results in the inter-chain
exchange J ′Br ≈ 0.2 K. The curves for Tsdw and TconeNN intersect at T0 ≡ Tsdw(mc,J ′Br) =
TconeNN(mc,J ′Br) ' 77 mK.

With J ′Br = 0.2 K, we compute the zero field ordering temperature of SDW order,
Tsdw|h=0 ≈ 112.12 mK, which agrees with the zero field specific heat anomaly at 100 mK [1].

0 2 4 6 8 10
0.008

0.009

0.010

0.011

0.012

mc ( 10
-4)

J
’/J

Figure 7. Relation between ratio Jp = J ′/
J and magnetization m near mc. The
coordinate of the red dot is (mc, Jp) =
(7.29, 0.01024), which gives the inter-chain
exchange for K2CuSO4Br2 as J ′Br ≈ 0.2 K.

5. Order parameters at T = 0
Here we propose to study the magnetic orders in more details by calculating the associate order
parameters, even though experimental attempts to measure them, via neutron scattering and
muon-spin spectroscopy, remain inconclusive for now [3]. The spin configuration is determined
by the relative ordering of θ (for cone and coneNN states) and φ (for SDW) phases on neighboring
chains, as well as by the magnitude of the local staggered magnetization, Ψ. The former
is described in Appendix B, while the latter is calculated in Appendix D. For example,
commensurate cone state is characterized by

Sx,y = (0, 0,M) + (−1)x+y|Ψcone|(− sin[θ0], cos[θ0], 0). (15)

The results of calculation in Appendix D are presented in Fig. 8 and 9. Comparing the
two figures, we notice the order parameter has smaller magnitude in Br-compound, due to the
stronger DM interaction which frustrates the system more. Also, cone-like orders are enhanced
by magnetic field, while SDW order is monotonically suppressed by it.
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Figure 8. Order parameter of cone (Ψcone,
blue) in K2CuSO4Cl2, where J ′/J = 0.024
and D/J ′ = 0.55, and Ψcone is enhanced by
field.

Ψsdw ΨconeNN
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Figure 9. Order parameters of SDW
(Ψsdw, orange dashed line) and coneNN
(ΨconeNN, blue) in Br-compound, where
J ′/J = 0.01 and D/J ′ = 1.4.

6. Conclusion
We have studied effect of weak exchange J ′ between antiferromagnetic Heisenberg spin-
1/2 chains on the phase diagrams of quasi-one-dimensional materials K2CuSO4Cl2 and
K2CuSO4Br2 [1, 2], subject to the uniform but staggered between chains Dzyaloshinskii-Moriya
(DM) interaction and external magnetic field. With the help of chain mean field calculation, J ′
can be determined quantitatively, and our results, denoted by J ′, are summarized in Table 1.
For spin chains with strong DM interaction (K2CuSO4Br2), one can extract value of J ′ directly
from the critical field corresponding to the phase transition between the spin density wave to
the coneNN states. The order parameter at zero temperature for each state is calculated as well.
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Appendix A. Bosonization
In the low-energy continuum limit the spin operator is represented by [11],

S(x)→ JL(x) + JR(x) + (−1)x/aN(x), (A.1)

with a is the lattice spacing, and continuous space coordinate is introduced via x = na, with
n an integer. JL(x) and JR(x), are the uniform left and right spin currents, and N(x) is the
staggered magnetization. These fields can be conveniently expressed in terms of abelian bosonic
fields (φ, θ),

J+
R = 1

2πae
−i
√

2π(φ−θ), J+
L = 1

2πae
i
√

2π(φ+θ), JzR = ∂xφ− ∂xθ
2
√

2π
, JzL = ∂xφ+ ∂xθ

2
√

2π
. (A.2)

N(x) =
(
−A3 sin[βθ], A3 cos[βθ], −A1 sin[2π

β
φ]
)
. (A.3)

Then Hamiltonian in Eq. (A.4) can be expressed,

H =
∑
y

[H0 + V +Hbs +Hinter], (A.4)
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where,
H0 = 2πv

3

∫
dx(JR · JR + JL · JL) = v

2

∫
dx[(∂xφ)2 + (∂xθ)2], (A.5)

V = HZ +HDM = −hz
∫
dx(JzR + JzL) + (−1)yD

∫
dx(JzR − JzL), (A.6)

Hbs = −gbs

∫
dx[JxRJxL + JyRJ

y
L + (1 + λ)JzRJzL], Hinter = J ′

∫
dxNy ·Ny+1, (A.7)

where v ' Jπa/2 is the spin velocity, λ = c′D2/J2 describes an Ising-like anisotropy induced
by DM interaction [13]. V contains the last two terms of Eq. (1), it collects all vector-like
perturbations of the bare chain Hamiltonian H0. HZ and HDM are the Zeeman and DM
interactions, respectively. Hbs describes residual backscattering interaction between right- and
left-moving spin modes of the chain, its coupling is estimated as gbs ≈ 0.23 × (2πv), see Ref.
[13] for details. The constant c′ = (2

√
2v/gbs)2 is about 3.83 from the Bethe ansatz solution, see

(B2) in Ref. [13]. The inter-chain interaction is described by Hinter, in which we kept the most
relevant, in renormalization group sense, contribution, Sx,y · Sx,y+1 → Nx,y ·Nx,y+1. Evidently,
the linear terms in V can be absorbed into H0 by shifting fields φ and θ appropriately,

φ→ φ+ tφ√
2π
x, tφ ≡

h

v
, (A.8)

θ → θ + (−1)y tθ√
2π
x, tθ ≡

D

v
. (A.9)

As a result of the shifts, the spin currents and the staggered magnetization are modified as

J+
R → J+

R e
−i(tφ−tyθ)x, J+

L → J+
L e

i(tφ+ty
θ
)x, JzR → JzR + (tφ − tyθ)

4π , JzL → JzL + (tφ + tyθ)
4π , (A.10)

N+ → N+eit
y
θ
x, N z → −A1 sin(2π

β
φ+ tφx). (A.11)

Here tyθ ≡ (−1)ytθ depends on the parity of the chain index y. Notice that the shift introduces
oscillating position-dependent factors to transverse components of J and N. The Hamiltonian
now reads as Eq. (4). The complete form of Hsdw is,

Hsdw = J ′A2
1

∫
dx sin[2π

β
φy + tφx] sin[2π

β
φy+1 + tφx]

= 1
2J
′A2

1

∫
dx
{

cos[2π
β

(φy − φy+1)]− cos[2π
β

(φy + φy+1) + 2tφx]
}
. (A.12)

The effect of position-dependent phase tφx is to induce sign-changing oscillations on the spatial
scale ∝ 1/tφ ∼ J/h. The corresponding RG scale is `φ ∼ ln(J/h). This needs to be compared
with the RG scale `inter ∼ ln(J/J ′) on which Hsdw reaches strong coupling. For `inter � `φ
(h � J ′) the oscillations are not important and SDW order is commensurate. In the opposite
limit `inter � `φ (h � J ′) the oscillations are frequent and wash out the second term in
(A.12). This corresponds to the development of incommensurate SDW. The commensurate-
incommensurate change takes place at h ∼ J ′. Here we assume that magnetic field hc, at which
SDW-coneNN transition takes place (see Sec. 4), satisfies hc ≥ J ′ condition and use the reduced
form of Hsdw, first term in (A.12) and Eq. (4). The obtained estimate for the interchain J ′ ≈ 0.2
K is found to be consistent with the made assumption.
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Appendix B. Spin configurations
The spin operator has two parts,

Sx,y = M + (−1)xNy(x), (B.1)

with M is magnetization along the magnetic field, and Ny(x) is the staggered magnetization on
site (x, y). We have three competing interactions Hcone, Hsdw and HNN as in Eq. (4) and (6).
When the dominant interaction is Hcone, and the ground state is commensurate cone phase.

Ny(x) = (−1)y|Ψcone|(− sin[θ0], cos[θ0], 0). (B.2)

This cone order is illustrated in Fig. B1. When the most relevant interaction is Hsdw, the ground
state is collinear SDW state. The system will be ordered in φ field, with φy = φ0 +

√
π
2 y+ hx√

2πv ,
and staggered magnetization is

Ny(x) = (−1)y|Ψsdw|(0, 0, sin[
√

2πφ0 + hx

v
]). (B.3)

If HNN is the most relevant interchain interaction, we obtain cone-like order in the plane
perpendicular to the external magnetic field, similar to Hcone case. The order corresponds
to θy = θ0 + (−1)y Dx√

2πv . (In principle, the constant phase θ0 can be different for even and odd
chains – it remains unclear how these two subsystems couple to each other in the regime of
strong DM interaction.) As a result, the staggered magnetization reads

Ny(x) = |ΨconeNN|(− sin[
√

2πθ0 + (−1)yDx/v], cos[
√

2πθ0 + (−1)yDx/v], 0). (B.4)

This order is shown in Fig.2. Different from order in (B.2), coneNN is spiraling in the transverse
x− y plane.

Figure B1. Staggered magnetization of
the cone state, illustrated for a field h ‖ D,
where all spins are ordered in the transverse
plane. This order is commensurate. Spins
pointing to opposite directions, reflecting
the anti-ferromagnetic interaction between
neighboring chains.

Appendix C. Chain mean field approximation
For an interaction,

Hy = H0 − c
∫
dx cos[βθy] cos[βθy+1], (C.1)

with the approximation of chain mean field(CMF), the spin (staggered magnetization part) takes
an average value

ψ̃ = 〈cos[βθy]〉. (C.2)
Then the Hamiltonian (C.1) reduces to,

Hy = H0 − 2cψ̃
∫
dx cos[βθy], (C.3)
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where the factor of 2 arises from two neighboring chains. Eq. (C.3) is just the sine-Gordon
Hamiltonian, to which three interchain interactions in Eq. (4) and (6) along with H0 in Eq. (A.5)
can reduce. We can rearrange Hcone in Eq. (4), by shifting the fields θ,

θy → θ̃y + (−1)yπ/(2β)− (−1)ytθx, (C.4)

then Hcone changes sign and transforms to,

Hcone = −2c1ψ̃1

∫
dx cos[βθ̃y], (C.5)

with ψ̃1 = 〈cos[βθ̃]〉 and cosβθ̃ ∼ cos[βθ + (−1)ytθx] is the x-component of staggered
magnetization in Eq. (A.11). Similar procedure (but shift is independent of position) can be
applied to Hsdw in Eq. (4) and HNN in Eq. (6),

Hsdw = −2c2ψ̃2

∫
dx[cos 2π

β
φy], HNN = −2c3ψ̃3

∫
dx cos[βθy], (C.6)

where ψ̃2 = 〈cos[2πφ/β]〉, ψ̃3 = 〈cos[βθ]〉.
To determine the critical temperature, we can expand Eq. (C.3), with self-consistent

condition,

1
2c = χ(q = 0, ωn = 0;Tc) =

∫
dx

∫ 1/Tc

0
dτeiqx+ωnτ 〈O(x, τ)O(0, 0)〉0 (C.7)

χ(q, ωn;T ) is momentum and frequency dependent susceptibility at finite temperature T . Here
the operators in consideration are,

O = cos(
√

4π∆1θ) or O = cos(
√

4π∆2φ). (C.8)

With two scaling dimensions in Table. 2, ∆1 = πR2 and ∆2 = π/β2. Here we follow the standard
calculation in Ref. [10], where Eq. (D.55) gives the expression of static susceptibility,

χ(q = 0, ωn = 0;Tc) = πuα2

2
[
(2πTα)2∆−2 Γ(1−∆)Γ(∆/2)2

Γ(∆)Γ(1−∆/2)2 −
Γ(∆− 1/2)√
π(1−∆)Γ(∆)

]
. (C.9)

Here, ∆ is either ∆1 or ∆2, and second term removes the non-physical divergence as ∆
approaching to 1.

Appendix D. Order parameter at T = 0
For a sine-Gordon model in Eq. (C.3), its action

SsG =
∫
dxdy

(1
2(∂xθ)2 + 1

2(∂yθ)2 − 2µ cos[βθ]
)
. (D.1)

here, µ = c〈cos[βθ]〉/v, and τ = y/v. According to Ref. [10, 17], we have the expression for
ψ̃ ≡ 〈cosβθ〉 as a function of magnetization M ,

ψ̃(M) =
[
( c
v

)β′2
σ′(M)1−β′2]1/(1−2β′2)

, (D.2)

where β′ = β/
√

8π, and

σ′(M) = tan[πξ/2]
2π(1− β′2)

[
Γ( ξ2)

Γ(1+ξ
2 )

]2 [πΓ(1− β′2)
Γ(β′2)

]1/(1−β′2)
, ξ = β′2

1− β′2 = β2

8π − β2 , (D.3)
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Eq. (D.2) is a general form of order parameter for sine-Gordon model. The three interactions
in consideration are Eq. (C.4) and (C.6), with β = 2πR, and their corresponding parameter β′
are,

β′1/3 = ∆1/2, β′2 = ∆2/2, (D.4)

where β′1,2,3 are associated with ψ̃1,2,3. Now we can compute the order parameters for two
materials K2CuSO4Cl2 and K2CuSO4Br2 with their exchange constants in Table 1. For
K2CuSO4Cl2, there is single cone with order parameter,

Ψcone = A3
[
(c1
v

)∆1σ′(M)2−∆1
]1/(2−2∆1)

. (D.5)

Ψcone is shown in Fig. 8. For K2CuSO4Br2, two order parameters need to be considered,

Ψsdw = A1
[
(c2
v

)∆2σ′(M)2−∆2
]1/(2−2∆2)

, ΨconeNN = A3
[
(c3
v

)∆1σ′(M)2−∆1
]1/(2−2∆1)

(D.6)

and they are shown in Fig. 9.
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