This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Frustrated S = 1/2 Two-Leg Ladder with Different Leg Interactions

, , and

Published under licence by IOP Publishing Ltd
, , Citation Takashi Tonegawa et al 2017 J. Phys.: Conf. Ser. 828 012003 DOI 10.1088/1742-6596/828/1/012003

1742-6596/828/1/012003

Abstract

We explore the ground-state phase diagram of the S = 1/2 two-leg ladder. The isotropic leg interactions J1,a and J1,b between nearest neighbor spins in the legs a and b, respectively, are different from each other. The xy and z components of the uniform rung interactions are denoted by Jr and ΔJr, respectively, where Δ is the XXZ anisotropy parameter. This system has a frustration when J1,aJ1,b < 0 irrespective of the sign of Jr. The phase diagrams on the Δ (0≤Δ<1) versus J1,b plane in the cases of J1,a = − 0.2 and J1,a = 0.2 with Jr = −1 are determined numerically. We employ the physical consideration, the level spectroscopy analysis of the results obtained by the exact diagonalization method and also the density-matrix renormalization-group method. It is found that the non-collinear ferrimagnetic (NCFR) state appears as the ground state in the frustrated region of the parameters. Furthermore, the direct-product triplet-dimer (TD) state in which all rungs form the TD pair is the exact ground state, when J1,a + J1,b = 0 and 0≤ Δ ≲ 0.83. The obtained phase diagrams consist of the TD, XY and Haldane phases as well as the NCFR phase.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.