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Abstract. The objective of this study is to evaluate the empirical performance of interpolation 

techniques in risk-neutral density (RND) estimation. Firstly, the empirical performance is 

evaluated by using statistical analysis based on the implied mean and the implied variance of 

RND. Secondly, the interpolation performance is measured based on pricing error. We propose 

using the leave-one-out cross-validation (LOOCV) pricing error for interpolation selection 

purposes. The statistical analyses indicate that there are statistical differences between the 

interpolation techniques:second-order polynomial, fourth-order polynomial and smoothing 

spline.  The results of LOOCV pricing error shows that interpolation by using fourth-order 
polynomial provides the best fitting to option prices in which it has the lowest value error.  

1.  Introduction 

The volatility function technique is considered as a nonparametric approach to extract the RNDs [1] . 
This method is based on the volatility smile function. In this approach, the estimated RNDs are 

calculated using second derivative of option prices with a condition of continuum option prices [2]. 

The condition of continuum option prices is impossible to exist in the real market. Thus, previous 
studies proposed various interpolation techniques to overcome this condition of continuum option 

prices. Interpolation techniques play a major part in deriving the true density from option prices.  

In beginning, the second-order polynomial interpolation was introduced to smooth a 

volatility smile [3].  It has been proposed to fitting the implied volatility instead of using the option 
prices directly due to the non-linearity problem [4]. Similar to [3], a second-order polynomial is used 

by [5] but in an implied volatility-delta space to interpolate the implied volatility function. The delta 

can be defined as the rate of change of the option prices with respect to the price of the underlying 
asset [6]. In a different study,  a cubic spline interpolation is used to interpolate the implied volatility 

in an implied volatility-strike space [7]. The cubic spline is preferred because of the flexibility in 

controlling the shape of a volatility smile. A smoothing spline intepolation was developed by [1] that 
combining [5,7] approached with certain modifications. This approach introduced a vega of options as 

the weight of each distribution together with a smoothing parameter [1]. Recently, drawback of the 

cubic spline in RNDs estimation has been pointed out by [8] and proposed a fourth-order polynomial 

interpolation on an implied volatility – strike price space to generate the continuum of option prices. 
To date, there are several types of interpolation techniques provided by previous literature of 

RNDs. However, previous studies do not have an agreement to which interpolation techniques should 
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be used in RNDs estimation. Thus, our study is largely motivated to know if there are any differences 

among the interpolation techniques with regards to RNDs estimation. To the best of our knowledge, 

this study is the first to analyze the statistical differences between the interpolation techniques namely 

second-order polynomial, fourth order polynomial and smoothing spline which are used to extract the 
RNDs. This paper contributes to the empirical finance literature by applying the cross-validation 

technique to determine the performance of each interpolation technique. The leave-one-out cross 

validation (LOOCV) of option prices error is chosen to select the appropriate interpolation which 
gives the lowest value error.                                                                                                                   

This paper is organized in the following ways. The second section presents the formula of 

Black-Scholes-Merton model, and the third section presents the theory of risk-neutral density. Fourth 

section lists the procedures to estimate the risk-neutral density using interpolation techniques. Section 
five describes the model evaluation and section six presents the data. Seventh section discusses the 

results and the final section presents the concluding remarks. 

2.  Black-Scholes-Merton model and implied volatility  
This study uses the Black-Scholes-Merton (BSM) model to price the option. The formula of BSM 

model is as follows:  
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The function  N   is the cumulative probability distribution function for a standardised normal 

distribution. The variables c and p are the European call and European put prices, respectively; 0S is 

the price of the underlying asset; K is the strike price; r is the continuously compounded risk-free rate; 

 is the underlying asset price volatility; and T is the time to maturity of the option. 

The volatility of underlying asset price in the BSM formula cannot be derived directly. Thus, 

this study implements the bisection method algorithm to get the implied volatility by using the inverse 
formula of the BSM model.   

3.  Risk-neutral density from option prices 

Price of a call option is given by the discounted value of expected payoff on the maturity date, T with 
respect to the risk-neutral probability:  

    
0

( , ) ,0rT
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                                                 (2)                                                   

where C is the European call price, TS is the price of the underlying asset; K is the strike price; 𝑟 is the 

continuously compounded risk-free rate and  Tf S  is the RND function. 

The RND can be extracted from the second derivative of an option price with continuous 

strike prices [9]. From equation (2) the partial derivative with respect to the strike price, K yields: 
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Then, the second derivative with respect to K in equation (4) gives a risk-neutral density function at K: 
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Numerically, equations (3) and (5) can be approximated using the following equations: 
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4.  Estimation of risk-neutral density procedures  

This subsection explains the procedure for the RNDs estimation by using smoothing spline and 

polynomial interpolation.  

4.1.  Extract RNDs using a smoothing spline interpolation 
Firstly, the call prices are translated into implied volatilities by using the inverse of the BSM model. 

Then, the strike prices are converted into option delta. The delta estimation is based on the at-the- 

money implied volatility in order to maintain the same ordering with the strike prices [1,9,10]. 
According to [6], the delta of call options can be calculated as follows :  
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where  is the standard normal cumulative distribution function. 
At this stage, the call prices-strike prices spaces are fully converted into implied volatility–

delta spaces. Then, the smoothing spline is used to interpolate the implied volatility by using the 

following equation: 

  2 3( ) ( ) ( )i i i i i i i ia b c d                                      (9) 

The parameter of equation (9) can be estimated by minimizing the objective function as stated in 

equation (10)  
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In line with [1], vega of options is calculated and is to represent the weight of parameter ( iw ) and 

the value of   is set to 0.99. Once it is fitted, extract the 1000 points of implied volatility from the 

implied volatility function. Last but not least, convert the 1000 point of implied volatility into the call 

prices using the BSM model and the option deltas are converted into strike prices. Finally, the RNDs 
are obtained by using the numerical calculation based on equation (7).  

4.2.  Extract RNDs using a polynomial interpolation 

The procedures of the second and fourth order polynomials in RNDs estimation are basically referred 

to [3,8] . The polynomial interpolation takes place in the implied volatility-strike prices spaces. Thus, 
the call prices are converted into implied volatilities. The implied volatility- strike space is fitted using 
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the second-order or fourth order polynomials. The implied volatility functions can be expressed as 

follows:  

 

i. Second-order polynomial :    2|   where = , ,K a bK cK a b c      

 

ii. Fourth-order polynomial  :    2 3 4|    where , , , ,K a bK cK dK eK a b c d e         

 

The 1000 points of implied volatility are extracted from the fitted curve and are transformed back to 

call prices by using the BSM model. Finally, the RNDs are calculated based on equation (7).  

5.  Model Evaluation 

This subsection describes  the interpolation performance measurement. Firstly, statistical analysis is 

applied to examine if the interpolation techniques provide any significant differences in RND 

estimation. Secondly, the leave-one-out cross-validation (LOOCV) is used to examine the best fitting 
among the interpolation approaches. 

5.1.  Statistical analyses 

The performance of the interpolation approaches in RNDs estimation is tested based on the following 
hypotheses: 

Hypothesis 1 (h1) :  The interpolation by using second and fourth order polynomials do not provide   

    any statistical difference in RND estimation. 
 

Hypothesis 2 (h2) :  The interpolation by using fourth order polynomial and smoothing spline do not   

   provide any statistical difference in RND estimation 

 
Hypothesis 3 (h3) :  The interpolation by using second order polynomial and smoothing spline do not   

       provide any statistical difference in RND estimation 

 
The implied mean and the implied variance of RNDs are used as an input for statistical 

analyses. The implied mean of RNDs give an expectation the price of the underlying asset price in 

future. The implied variance of RNDs indicates the deviation or uncertainty of the evolvement of the 

underlying asset price. The hypothesis for the implied mean is tested using standard t-test and the 
implied variance is tested using F-test. 

 

The implied mean and the implied variance can be calculated as follows: 

i. Implied mean :   K f K dK



   

ii. Implied variance :    
2

K f K dK 



   

where K is the strike price and  f K is the RND corresponding to the strike price.  

5.2.  Cross-validation 

Basically the whole data set is fitted using the interpolation approaches. Then, the interpolation 
approach that provides the lowest error is chosen when compared between the data set and the fitted 

values. However, this approach may lead to over fitting the dataset and gives a false conclusion of a  

particular interpolation that provides the best fitting with the lowest error. In addition, it does not 
exhibit the true performance of the interpolation approach when involves a prediction of a new value.  

Thus, cross-validation is used to detect and prevent the overfitting case.[11] is the first to 

propose a model evaluation by using a cross-valuation method.  Briefly, the cross-validation deleted 
some of the data before an interpolation starts. The deleted data is then used to get the predicted value 
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using an interpolation equation. The cross-validation can be divided into three categories namely the 

simple cross-validation with holdout method, the K-fold cross-validation and the leave-one-out cross-

validation (LOOCV). LOOCV is highly recommended as an appropriate model to use as it gives an 

unbiased estimator to represent the performance of a model [12].  
However, the LOOCV method is not widely used in finance literature. This study is inspired 

by the seminal work of  [13] that uses the LOOCV method to examine the performance of a spline in a 

volatility surface. Therefore, this study adopts the concept of LOOCV in order to determine the ability 
of each interpolation in RNDs estimation.  

There are several steps in LOOCV estimation. Let N  be the number of observation data. 

Firstly, remove the i-th observation data and then data is fitted corresponding to the particular 

interpolation. Re-evaluate the  i-th data by using the model estimated on N i  data. This method 

requires intensive computation since it is  fitted N times. The LOOCV estimation can be calculated as 

follows: 

 
1

1 n

n i

i

CV e
n 

                                                            (11)  

where  
2

ˆ
i i ie y y  .  

Note that the main objective of this study is to generate a continuum of option prices by 

using the fitted implied volatility. The difference between the market prices for options and the option 

prices based on the fitted model is considered as an approximation error. Following [13], the error is 
calculated as  

 
2

ˆ
i i ie C C                                                         (12) 

where iC is the market price of call options and ˆ
iC is the price of call options based on the fitted 

model.  

6.  Data 

Our study uses dataset on Dow Jones Industrial Average (DJIA) index options and is obtained from 
OptionData.net. The dataset covers the period from January 2009 until December 2015. The interest 

rate used is based on the London Interbank Offer Rate (LIBOR) for 1-month. The price of the 

underlying asset, interest rate and the dividend yield are retrieved from the DataStream.  Only out-of-
the-money (OTM) of call and put options is considered in this study due to liquidity reasons [8,10,14–

22]. In line with [8,15,23], the average of bid-ask quotes is used to represent the closing price of 

options. This study only considers options with a one-month maturity according to the Chicago Board 
Options Exchange (CBOE) calendar.  

There are several restrictions applied on the dataset before the final dataset is obtained. 

Firstly options with bid or ask quotes equal to zero are eliminated and to ensure that the ask quotes are 

greater than the bid quotes. Secondly, option prices that violate the arbitrage condition are excluded. 
Lastly, only options with the lowest delta value less than or equals to 0.25 and the highest delta value 

equals or greater than 0.75, are used. This condition is applied to ensure the RNDs extracted exhibits 

the true density. The final sample consists of 83 set of options with a one-month maturity. 

7.  Results and Discussions 

This subsection explains the result of the analyses. and is divided into two parts. The first part is the 

explanation of statistical analyses based on the implied mean and the implied variance. The second 
part explains the LOOCV option price error.   

Options prices that is available on 22 February 2010 is used to illustrate the computational 

work explained in Section 4.  Figure 1 illustrates the steps in RNDs estimation for the three types of 

interpolation. The interpolation of volatility smile is presented in the first row, followed by the graph 
of call prices based on the fitted implied volatility and in the last row is the RNDs estimation. These 

computations are applied to the whole 83 set of options. The polynomial interpolation is taken place in 
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an implied volatility-strike prices space. On other hand, the interpolation using smoothing spline is 

taken place in an implied volatility-delta space. The graph for each step corresponding to each 

interpolation does not display an outstanding differences and it leads us to further analyze these 

interpolation techniques using statistical analyses.  
 

 Second Order 

Polynomial 

Fourth Order 

Polynomial 

Smoothing Spline 

Interpolated 

Smile 

   

Call Valuation 

function 

 

 

 

 

 

 

Risk-Neutral 

density 

  
 

 

Figure 1. Illustration of computation using DJIA index options prices, February 22, 2010  

7.1.  Statistical Moments 

Implied mean and implied variance for the DJIA index options with a one-month maturity are 
presented in Figure 2 and Figure 3, respectively. All interpolation method do not clearly exhibit any 

differences. Then, the performances of the interpolations are tested using statistical analysis. Table 1 

reports the statistical differences results of the implied mean and the implied variance according to the 
hypotheses mentioned in Section 4.1. Majority of the cases clearly reject the null hypotheses of 

equality of the implied mean and the implied variance
1
. Therefore, it can be concluded that all the 

interpolation approaches have statistical significances. It implies that the interpolation approach affect 
the RNDs estimations.  

 

                                                   
1
  Due to the limited space, the complete results for the statistical test are available to the reader upon request 
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Figure 2. Implied mean 
 

 
 

Figure 3. Implied variance 

 
Table 1. Statistical analyses for implied mean and implied variance for DJIA index options from 

January 2009 until December 2015 

 

Hypothesis Comparison of interpolation t-test for implied mean F-test for implied variance 

h1 
second-order 

polynomial  

fourth-order 

polynomial  
62 cases reject  h1 63 cases reject h1 

h2 
fourth-order 

polynomial  

Smoothing 

spline 
73 cases reject h2 78 cases reject h2 

h3 
second-order 

polynomial  

Smoothing 

spline 
57 cases reject h3 65 cases reject h3 
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7.2.  LOOCV pricing error 

The previous results only convey that each interpolation has different effect towards the RNDs 

estimation without pointing out which of the interpolation approach is the most appropriate. This study 
further analyzes which interpolation provides the best fitting so that the call prices generated has the 

lowest approximation error. Thus, the LOOCV approach is used to examine the performance of the 

interpolations. The ability of interpolation approach in general is measured based on various error 
metrics namely root mean square error (RMSE), mean absolute percentage option pricing error 

(MAPE), and mean absolute option pricing error (MAE). The results are presented in Table 2.  

Overall, the interpolation of fourth-order polynomial has the lowest value compared to the 

two interpolation approaches. This finding is in agreement with [8] in which a higher order polynomial 
is better than a lower order polynomial. Even though the smoothing spline is widely used in the 

previous literature [1,10,24], however it shows the highest error of option pricing based on LOOCV 

techniques.  
 

Table 2. LOOCV pricing error of the option prices corresponding to the interpolation approach 

 

 
RMSE MAPE MAE 

Second-order polynomial 1.364 11.633 1.008 

Fourth-order polynomial 1.221 10.863 0.929 

Smoothing spline 1.895 11.243 1.222 

8.  Conclusions 

The interpolation approaches play a crucial role in the volatility function techniques for the RNDs 

estimation. This study statistically and empirically analyze the performance of the interpolation 
approaches namely second-order polynomial, fourth-order polynomial and smoothing spline. Results 

show that each interpolation has significance difference among each other. Each interpolation provides 

different value of RNDs estimation. Further, the leave-out-one cross-validation (LOOCV) was 
conducted to determine which interpolation is appropriate to be used. The finding shows that the 

interpolation of fourth order polynomial outperformed the second-order polynomial and smoothing 

spline in which it gives the lowest value of LOOCV pricing error.  
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