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Abstract. As explosive blasts continue to cause severe damage as well as victims in both civil 

and military environments. There is a bad need for understanding the behavior of structural 

elements to such extremely short duration dynamic loads where it is of great concern nowadays. 

Due to the complexity of the typical blast pressure profile model and in order to reduce the 

modelling and computational efforts, the simplified triangle model for blast loads profile is 

used to analyze structural response. This simplified model considers only the positive phase 

and ignores the suction phase which characterizes the typical one in simulating blast loads. The 

closed from solution for the equation of motion under blast load as a forcing term modelled 

either typical or simplified models has been derived. The considered herein two approaches 

have been compared using the obtained results from simulation response analysis of a building 

structure under an applied blast load. The computed error in simulating response using the 

simplified model with respect to the typical one has been computed. In general, both simplified 

and typical models can perform the dynamic blast-load induced response of building structures. 

However, the simplified one shows a remarkably different response behavior as compared to 

the typical one despite its simplicity and the use of only positive phase for simulating the 

explosive loads. The prediction of the dynamic system responses using the simplified model is 

not satisfactory due to the obtained larger errors as compared to the system responses obtained 

using the typical one. 

1. Introduction 

Accidental explosions and deliberate bombings by terrorists cause catastrophic structural damage 

which results in downtime such structures and create a negative impact on society. This phenomenon 

may lead to severe damage or even damage to numerous surrounding structures. Moreover, loss of life 

can result from the collapse of structures [1-4]. Several research works have investigated the different 

models of air blast and the effect of air blast loads on reinforced concrete structures. The evolution of 

blast pressure with time  can be simulated either by exponential distribution, which depends on 

explosive charge size, type, and distance to a target, or by triangular distribution through neglecting 

the suction stage which leads to the simplified model  [5-7].   

The methodologies available nowadays for prediction of blast effects on building structures can be 

divided into experimental, analytical and numerical procedures. Although the experimental tests are 

unsafe, expensive and dangerous, they can provide a wealth of useful data.  
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The theoretical approach usually utilizes idealized models and building structures modelled as single-

degree-of freedom systems (SDOF). Although this procedure is based on several assumptions and 

approximations, it is considered as the most applicable one and rather applicable in routine design 

where it provides researchers and structural designers with useful data and results [8]. This procedure 

substitutes the structural element by an equivalent stiffness, SDOF structural system and an elastic-

plastic response spectra to capture the peak responses of modelled system. With the development of 

computer technology, a lot of researchers paid attention for conducting research works concerning the 

blast induced structural response numerically. The equations of motion are widely used to describe 

complex models in various field of engineering, particularly in structural dynamic. The wide 

applications of these equations are the main reason behind attracting mathematicians for performing 

blast analysis in the last decades. In order to understand the physical mechanism of phenomena in 

nature described by second order non homogeneous ordinary differential equation, exact solutions 

have to be explored. The study of these equations becomes one of the most important topics in 

mathematical physics.  

This research aims to drive the exact solution of the dynamic response of buildings under blast loads 

for two types of pressure configurations, more accurate exponential distribution of blast pressure and 

simplified triangular blast pressure. 

2. Modelling and idealization 

The structure under study is one which can be represented by idealized SDOF mathematical model for 

predicting dynamic response of concrete structures subjected to blast loading as shown in figure 1. A 

rigid deck is connected to a base through massless columns of stiffness k, representing the resistance 

of structure against deformation, and damping coefficient c. The values of structural stiffness and 

damping coefficients can be calculated from the formulas [9]. 

                                                          
2
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4
 ;  2

m
k c km

T
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
                                                           (1) 

where T, and ζ denote the natural structural vibration period and structural damping, respectively. 
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Figure 1. (a) Idealized SDOF building model (b) typical blast load profile (c) simplified blast 

load profile. 

 

The equation of motion of the idealized building model presented in figure 1(a) and subjected to a 

blast pressure  P(t) can take the form:     

                                                             ( )
eq

mu cu ku A p t                                                             (2) 

where u, 𝑢̇, 𝑎𝑛𝑑 𝑢̈ represent the displacement, velocity, and acceleration of the superstructure 

respectively, while, 𝐴𝑒𝑞 is the exposed surface area of the building model. The blast pressure 

distribution as function of time t, the positive phase duration t0, and the peak overpressure Pmax 

can take either the typical form (figure 1(b)):  

p( t )
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Or the simplified form (figure 1(c)):  

                                                                  
max

0

( ) (1 )
t

p t p
t

                                                                 (4) 

where b is a shape parameter depending on the dimensionless characteristic scaled distance Z [5] as:                                                 

 

                                                                        
1/3

R
Z

W
                                                                        (5) 

where W is an explosive charge, expressed in Kilograms of TNT, and R is the standoff distance, or 

distance between a point of interest and the blast epicenter. 

3. Closed form solution 

Case 1: equation of motion with forcing term modeled as typical model  

Referring to equations (2) and (3), the equation of motion of the building model under typical blast 

pressure is 

                                                
a

0
m x

0

 (1 p)ex
eq

t
mu cu ku A p

t

bt

t
   

 
  
 

                                         (6) 

With initial conditions:  

                                                                    
(0) 0, (0) 0u u                                                               (7) 

Equation (6) together with initial conditions in equation (7) can be solved analytically in terms of the 

particular and homogenous solutions to determine the time-dependent displacement, velocity, and 

acceleration of the system following any of the available textbooks [10] as:  

                                                                 
0

( )expp

bt
u A Bt

t

 
   

 
                                                      (8) 

where 𝑢𝑝 is the particular solution. A and B are constants to be determined applying the method of 

determined coefficients as:  

                                                                
max

2

0 2

0 0

( )

eqp A
B

b b
t m c k

t t




 

                                                        (9) 

                                                           

2

0 0

max 0

( 2 )
eq

B b
A Bt c m t

p A t
                                                 (10) 

The homogenous solution uh can be written as: 

                                                          
  1 2cosp siex nhu c tt c t                                               (11) 

where 𝑐1, 𝑐2, α and β are another constants to be determined employing the characteristic equation and 

the initial conditions.  

Applying the characteristic equation α and β have been found in terms of mass, stiffness and damping 

coefficient of the building model as: 
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 
                                                   (12) 

Knowing that the general solution u is the summation of both homogeneous and particular solution: 

                                                                        
h pu u u                                                                     (13) 

                                      
  1

0

2coexp es sin ( ) xpu c t c t A Bt
bt

t
t

 
 

   


 


                               (14) 

Derivative of u with respect to time t can be derived as: 

                  

   

0

1 2

0

1 2

0

cos siexp exp

exp ex

n sin cos

(p )

u α c βt c βt c β βt c β βαt αt

bt

t

b
B A Bt

t

bt

t t

          

 
    
      
 


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(15) 

Similarly, derivative of  u  with respect to time t  can be derived as: 

             

   

 

2
1 2 1 2

2
2 2

1 2 2
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t c β βt B A Bt

t t

    
   
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 (16) 

where A, B, α and β determined as before. 

In order to find the constants 𝑐1 and 𝑐2 one needs to apply initial conditions to equations (14) and (15). 

                                                                           
1c A                                                                       (17) 

                                                                  

0
2

( )
b

A B
t

c

 






                                                            (18) 

Case 2: equation of motion with forcing term modeled as simplified model 

Referring to equations (2) and (4), the equation of motion of the building model under simplified blast 

pressure is 

                                                                  
  ( )mu cu ku p t                                                           (19) 

where                                           ( )P t


 


 
max 0

0

0

(1 )

0

eq

t
P A t t

t

t t

 



                                             (20)       

                                                      

With the same initial conditions mentioned in equation (7). 

For the case  0
t t : 

The particular solution can take linear form as: 

                                                                           pu A Bt                                                                (21) 

Obtaining the derivatives of equation (16) and substituting into equations (14) and comparing 

coefficients: 
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Substituting the values of A and B into equations (16) 

                                                            

max

0

0

( )
eq

p

P A c
u t t

kt k
                                                           (24)

 

Similarly to the typical model case the homogeneous solution can be found as|:  

                                                       
  1 2cosp siex nhu c tt c t                                                  (25) 

The values of α and β  can be calculated as in equation (12). 

 In order to find the constants c1 and c2 one needs to apply initial conditions to the general solution 

equation. 

Knowing that the general solution u is the summation of both homogeneous and particular solution: 

                                                                          h pu u u                                                                   (26)  

                                    

 
max

1 2 0
0

cos sin ( )exp
eq

h

P A c
αtu c βt c βt t t

kt k
                                   (27) 

Derivative of u with respect to time t can be derived as:  

               

   
max

1 2 1 2
0

exp exsin cos cop s sin
eq

P A
u c β βt c β βt α c βt c βt

kt
αt αt           

      

  (28) 

Similarly, derivative of 𝑢̇ with respect to time t can be derived as: 

                 

   

   

2 2
1 2 1 2

1 2 1 2
2

sin cos cos sin

cos sin sin cos

exp exp

exp exp

αt αt

α α

u α c β βt c β βt c β βt c β βt

c βt c βt α c β βt c β βαt tt

          
                       

 (29) 

Now we apply initial conditions to the general solution equation (27) and equation (28). 

                                                              
max

1 0
0

( )
eq

P A c
c t

kt k
                                                            (30) 

                                                        
2 0

0

1
max eq

P A c
c [ α( t )]

βkt k
                                                       (31) 

For the case  0
t t : 

The forcing term P(t)=0, the general solution 
0

t t
u


can be expressed as: 

                                                  

 
0

1 2
cos sip nex

t t
u G βαt t G βt


                                                  (32) 

Derivative of 
0

t t
u


with respect to time t  

                   

   
0

1 2 1 2
sin cos cexp exp os sin

t t
u G β βt G β βt G βt Gα t tα βt


                           (33) 
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Appling the initial conditions (as illustrated in figure (2)): 
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where                                                            0 0
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     (39) 
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ss
u

re

u t > to

u t = to

u t > to

u t = to

 

Figure 2. Initial conditions for the case t ≥ t0. 

Figure 2 presents the simplified triangle distribution for the blast load as well as the initial condition 

required to get the exact solution of equation (19). 

4. Results and discussion 

To demonstrate the validity of the simplified blast load model, the closed form solution of the equation 

of motion for the building model shown in figure 1(a) using the two models of blast loads presented in 

figure 1(b) and (c) are provided using an explosive load of peak pressure Pmax of 312 kpa and positive 

phase duration t0 = 0.02142 second. The considered system parameters in terms of mass m, damping 

ratio ζ and natural period Tn, are set to be 25 ×10
3
 kg, 0.05 and 1.2 s respectively. 

Here, for brevity, a comparison between typical and simplified blast pressure profile models is 

performed. 

 

6

7th International Conference on Applied Physics and Mathematics (ICAPM 2017)                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 814 (2017) 012007         doi:10.1088/1742-6596/814/1/012007



 

 

 

 

 

 

 

Figure 3. Storey displacement time histories with 

two models of blast load. 

 

It can be seen from figure 3 that the displacement of the building model reaches its peak at the end of 

explosion time. Moreover, it has been noticed that, the error in predicted displacement response 

increases with increasing the blast duration. 

 

 

Figure 4. Storey velocity time histories with two 

models of blast load. 

 

Figure 4 presents the captured velocity time-histories of the considered building model using the 

typical and simplified blast models. It is worth noting that the velocity of the structure increases 

rapidly in the initial time to reach its peak value almost at the end of the positive phase duration t = t0, 

and the corresponding error reaches maximum at the end of positive phase as well. 

 

 

Figure 5. Storey acceleration time histories with two 

models of blast load. 

 

Focusing on the acceleration curves shown figure 5, it can be seen that the accelerations start with 

certain maximum values immediately at the occurrence of the blast detonation followed by a sudden 

decrease to zero for the remaining time duration. Therefore, the acceleration response appears to be 
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only significant at the start of the explosion causing sudden increase in the storey accelerations. 

Moreover, it has been noticed that, the obtained peak acceleration response with simplified model is 

nearly identical to the one obtained with typical model. 

The captured peak displacement and velocity for the considered herein building model subjected to the 

aforementioned blast load in the form of typical model are 0.0469 m, and 0.4748 m/s respectively. 

Considering the blast load in the form of the simplified model one increases these captured values to 

be 0.0935 m, and 0.7396 m/s respectively. Consequently, the simplified model overestimates the peak 

responses by 100% and 60% respectively. But, the peak acceleration remains constant and equal 

69.7986 m/sec
2
 in both of the two models. 

As it can be seen from the presented figures and the obtained results, the proposed simplified model 

excessively increases the obtained response for the building model during the whole period of 

explosion and does not yield good predictions except for the peak acceleration response.  

5. Conclusions 

This paper presents a comprehensive investigation on the induced structural response due to applied 

blast loads. Both typical and simplified models have been used to represent the explosive load acting 

on the building model. It has been demonstrated that the simplified model for blast load yields 

unreasonable predictions of structural responses as compared to the typical model where a significant 

difference between the induced structural responses of the buildings has been found. 
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