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Abstract. A Least Squares Collocation Meshless Method based on Radial Basis Function
(RBF) interpolation is used to solve steady state heat conduction problems on 2D polygonal
domains using MATLABR© environment. The point distribution process required by the
numerical method can be fully automated, taking account of boundary conditions and geometry
of the problem to get higher point distribution density where needed. Several convergence tests
have been carried out comparing the numerical results to the corresponding analytical solutions
to outline the properties of this numerical approach, considering various combinations of
parameters. These tests showed favorable convergence properties in the simple cases considered:
along with the geometry flexibility, these features confirm that this peculiar numerical approach
can be an effective tool in the numerical simulation of heat conduction problems.

1. Introduction
The accuracy of standard numerical methods used in Computational Fluid Dynamics (CFD),
such as Finite Element, Finite Volume and Spectral Element Methods among others, rely on a
high quality discretization of the spatial domain. This discretization process, known as meshing,
heavily affects both the overall time consumption and the accuracy of the simulation, with
higher costs when dealing with problems that require continuous remeshing (moving/deformable
domains); finally, meshing can’t always be fully automated.

To circumvent the need of a mesh, several meshless approaches have been proposed [1–3]:
the general idea is to employ only one set of points, distributed over the domain, to approximate
the unknown field and its derivatives, without any geometrical discretization of the domain.

A wide class of meshless methods which has been the object of recent developments is the
one based on Radial Basis Function (RBF) interpolation [4–7]: this technique accepts only the
relative (Euclidean) distance between the points as interpolation parameters. An important
distinction exists between globally supported RBF and locally supported RBF, as the former
produces a fully populated interpolation matrix while the latter produces a sparse matrix. We’ll
focus our attention on locally supported RBF because, in general, the solution of a sparse linear
system can be much more efficient than the solution of a full matrix linear system; the gain
in computational efficiency is balanced by the loss of spectral convegence that is a property of
some globally supported RBF [8].

1

34th UIT Heat Transfer Conference 2016                                                                                            IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 796 (2017) 012006          doi:10.1088/1742-6596/796/1/012006

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0


The final set of equations is then obtained through a collocation method using a number of
collocation points larger than the number of the unknowns, i.e., the resulting coefficient matrix
is rectangular (and sparse); therefore the least squares solution can be efficiently computed
through a QR decomposition of the matrix using the standard MATLAB R© built-in routines.

Several computations are carried out considering various combinations of parameters and
different types of polygonal 2D domains for a simple Poisson equation to outline the properties
of this numerical approach, comparing the computed solution to the corresponding analytical
solution. These tests showed that this method can be an effective and robust tool in the
numerical simulation of heat conduction problems even in complex shaped domains.

2. Governing equation and boundary conditions
Let us consider the following 2D Poisson equation in the unknown temperature field φ:

∇2φ = q (1)

defined on the domain Ω; equation (1) is representative of steady state heat conduction problems
with internal heat generation q, in the case of a constant k = 1 thermal conductivity.

For simplicity let us consider only Dirichlet boundary conditions (fixed temperature) along
the domain boundary Γ = ∂Ω:

φ = φ̄ (2)

Since the computed solution will be compared to the corresponding analytical solution φan,
we’ll set φ̄ = φan; the domain Ω and the terms q and φan will be defined case by case.

3. Domain definition
Let us consider for simplicity a 2D simply-connected polygonal domain Ω defined by a set of
vertices vi , i = 1, . . . , V . The sides Γi , i = 1, . . . , V connecting a vertex to the following
one (except for the last side which connects the last vertex to the first) compose the domain
boundary Γ = ∪Γi.

4. Point distribution
The point distribution process is here described; since two sets of points will be needed (field
and collocation points, see §5.1), in this section we’ll refer to a generic distribution of points
xpt
i , i = 1, . . . , Npt, where pt stands for point type: for field points pt = f while for collocation

points pt = c.

4.1. Uniform distribution
First of all we create a uniform cartesian distribution of NU,pt points covering the whole Ω with
spacing h for each of the two dimensions; any spatial shift or rotation of this distribution has
negligible influence on the results. Points outside Ω or lying on Γ are discarded (inside/outside
Ω test is performed using a simple but efficient horizontal right hand boundary intersection).

4.2. Thickened distributions around vertices
For each vertex vi where a thickened point distribution is required, two parameters are defined:
a thickening parameter τi ≥ 1 and a de-thickening factor fi > 0; τi defines the point thickening
around vi, while fi defines the thickening decreasing factor from vi.

More precisely, if τi > 1 we define a sequence of radii rj :

rj+1 = rj +
h

1 + (τi − 1) exp(−r2
j f

2
i )

(3)
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for j = 0, . . . , J with r0 = 0 till a final radius rJ such that (rJ+1 − rJ)/h > 0.75 .
For each radius rj starting from r1 we create a uniform tangential distribution of points

centered in vi with angular spacing ∆ϑ = rj+1/rj − 1 such that the tangential spacing is
approximately equal to the radial spacing. Again, points outside Ω or lying on Γ are discarded;
the total number of points for this distribution is NV,pt.

4.3. Boundary distribution
For each side Γi with length Li and vertices vp,vq, we define a sequence of coordinates sj :

sj+1 = sj +
h

1 + (τp − 1) exp(−s2
jf

2
p ) + (τq − 1) exp(−s2

jf
2
q )

(4)

for j = 0, . . . , J with s0 = 0 till a final coordinate sJ+1 > Li; normalizing sj with respect to
sJ+1, the boundary distribution on side Γi is:

xpt
j = (1− sj)vp + sjvq (5)

The total number of points for this distribution is NB,pt and we have Npt = NU,pt +NV,pt +
NB,pt.

4.4. Refinement process
At this point the final distribution xpt

i may exhibit point clustering because of the superposition
of the uniform distribution and the thickened distributions around vertices; this phenomenon
has to be avoided because points close to each other will produce bad conditioned interpolation
matrices.

To overcome this problem we employed a simple point refinement process based on the
reciprocal repulsion of points: each point is subjected to the radial repulsion force of the closest
9 points (the neighbor search is done using a simple cartesian partitioning scheme).

The repulsion force magnitude is chosen to be the following:

F (d) = αhc

[
4

(
d

hc

)2

+ 1

]−2

(6)

where d is the distance between the points, hc = 1/
√
ρi is the local point spacing around xpt

i
(ρi ≈ #points/∆area is the local point density) and α = 0.1÷ 0.6 is an adjustable parameter.

This refinement process is iterated typically 4÷ 10 times over the whole point set except for
the boundary points which are fixed.

5. Numerical method
5.1. Point sets
Since a least squares collocation method is employed [1, 9], two point distributions are defined:

the field points xf
i , i = 1, . . . , Nf , where the Nf temperature field unknowns φi are defined, and

the collocation points xc
i , i = 1, . . . , Nc, where the discretized version of equation (1) will be

written in a collocation fashion with Nc ≥ Nf .

5.2. RBF interpolation
RBF interpolation approximates the field φ around x through the following expansion [10]:

φ(x) =
n∑

i=1

aiϕ(‖x− xf
i ‖) + b · x + c (7)

3
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i.e., a linear combination of RBFs ϕ centered at the n field points xf
i plus a linear polynomial in

x. If a locally supported interpolation is chosen, only the n closest points to x are considered.
There are many possible choices for the RBFs ϕ [11, 12]; the generalized Multiquadrics

(MQ) have been chosen since they seem to offer the better results if appropriate parameters
are employed [8, 13–15]:

ϕ(r) =
[
(εr)2 + 1

]p/2
(8)

where ε is the shape factor and p is an odd integer.

The coefficients ai, b and c are computed writing equation (7) for the n neighbor points xf
i :

φ(xf
i ) = φi (9)

The following additional relations are needed to get a symmetric and square local
interpolation coefficient matrix G [10]:

n∑
i=1

xfi ai = 0 ,
n∑

i=1

yfi ai = 0 ,
n∑

i=1

ai = 0 (10)

Collecting the n coefficients ai and the n unknown values φi in column vectors a and φφφ,
respectively, the interpolation system, in compact form, is the following:

G

a
b
c

 =

{
φφφ
0

}
(11)

and finally, since G is symmetric, we have:

aT = φφφTG−1
a (12)

where G−1
a is the upper n× n submatrix of G−1.

5.3. Least squares collocation

Defining ri(x) := ‖x− xf
i ‖ and putting equation (7) into equation (1) we have:

n∑
i=1

ai∇2ϕ
(
ri(x)

)
= q(x) (13)

The Laplacian L of the MQ is therefore:

L(r) := ∇2ϕ(r) = 2pε2
[
(εr)2 + 1

]p/2−1
[
p/2− 1

(εr)2 + 1
(εr)2 + 1

]
(14)

Writing equation (13) in a generic collocation point x = xc
j will give:

n∑
i=1

aiL
(
ri(x

c
j)
)

= q(xc
j) (15)

Collecting the n distances ri in the column vector r, equation (15) can be written as:

aTL
(
r(xc

j)
)

= q(xc
j) (16)

Finally, recalling aT from equation (12) we have:
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φφφTG−1
a L

(
r(xc

j)
)

= q(xc
j) (17)

Equation (17) is the final scalar equation for the generic collocation point xc
j ; the column

vector G−1
a L

(
r(xc

j)
)

contains the n coefficients of this equation.
The final system is obtained writing equation (17) for all Nc collocation points:

Aφφφ = q (18)

where A is the Nc×Nf coefficient matrix, q is the column vector of generation term q evaluated
at all Nc collocation points and φφφ refers to all Nf field unknowns φi.

The imposition of Dirichlet boundary conditions, equation (2), is straightforward; partitioning
A = [AI | AB] and φφφ = {φφφI ;φφφB} through Internal (NU,f + NV,f ) and Boundary (NB,f ) field
point indexes, equation (18) becomes:

AIφφφI = q−ABφφφB (19)

Since Nc > NU,f +NV,f , AI is a tall rectangular matrix and the solution φφφI must be computed
using a least squares solver; we employed the standard MATLAB R© backslash (\) operator which,
in this case, performs a QR decomposition of the matrix.

5.4. Remarks on RBF interpolation
It is known that the interpolation matrix G, equation (11), tends to be severely ill-conditioned
when small shape parameters ε are employed, or when the interpolation points are close to each
other, or both [16].

To alleviate this problem we employed an improved LDL solver which takes advantage of the
form of the upper n× n entries of G (gij = ϕ(rij) = 1 +m(rij), where m(·) is the non-costant
part of MacLaurin expansion of the RBF ϕ) to gain some numerical precision with no additional
costs.

5.5. Error norm
The comparison between the computed solution φcomp and the corresponding analytical solution
φan will be done computing the following RMS error norm e:

e =

√
1

A(Ω)

∫
Ω

(φcomp − φan)2 dΩ (20)

where A(Ω) is the area of Ω. The 2D integral in equation (20) is computed by numerical
quadrature via a Delaunay triangulation of the field point set.

6. Numerical results and discussion
6.1. Test case A: uniform distribution, harmonic q
The problem is defined on a square domain Ω = [0, 1]2 and solved using only uniform
distributions of points (NV,f = NV,c = 0) and n = 9 as number of local interpolation points.

The chosen reference solution is harmonic:

φan = sin(2πx) sin(2πy) (21)

and its Laplacian is therefore also harmonic:

q = ∇2φan = −8π2 sin(2πx) sin(2πy) (22)
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– – – Nf = 502

— · — Nf = 1002

- - - - Nf = 2002

—— Nf = 3002
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10-4

10-3

10-2

Figure 1. Test case A. Total error e versus
shape parameter ε; p = 1 and Nc/Nf = 2.
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10-3

10-2

Figure 2. Test case A. Total error e versus
shape parameter ε; p = 3 and Nc/Nf = 2.
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10-7
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10-2

Figure 3. Test case A. Total error e versus
shape parameter ε; p = 1 and Nc/Nf = 4.

2 2.5 3 3.5 4 4.5 5
10-7

10-6

10-5

10-4

10-3

10-2

Figure 4. Test case A. Total error e versus
shape parameter ε; p = 3 and Nc/Nf = 4.

First af all we investigated the influence of MQ shape parameter ε on the solution error e
considering two MQ exponent factors p = 1, 3 , two ratios Nc/Nf = 2, 4 and various numbers of
field points Nf (Figures 1-4).

These figures show that for each MQ exponent factor p there exists a particular shape
parameter ε∗ which minimizes the error e; for p = 1, ε∗ lies around 2 and for p = 3, ε∗

lies around 3.5. However, ε∗ depends upon the specific solution φ, so the optimal choice for ε
has to be made case by case.
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– – – ε = 6.0
— · — ε = 4.5
- - - - ε = 4.0

—— ε = 3.5

103 104 105
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10-6

10-5

10-4

10-3
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1

1

Figure 5. Test case A. Covergence curves
for p = 3 and Nc/Nf = 2.
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10-6

10-5

10-4

10-3

10-2

1

1

Figure 6. Test case A. Covergence curves
for p = 3 and Nc/Nf = 4.

On the other hand, from the same figures it is possible to see how the influence of MQ
exponent factor p is negligible on the error curves; for this reason from now on we’ll consider
only p = 3.

Finally, the influence of Nc/Nf ratio for both p = 1 and p = 3 seems to be positive on the
error e only for shape parameters around ε∗ but, surprisingly, the smaller error e(ε∗) is observed
with Nc/Nf = 2 instead of Nc/Nf = 4, i.e., employing less collocation points; for ε far from ε∗,
however, this behaviour disappears.

Convergence curves for different shape parameters ε and for two ratios Nc/Nf = 2, 4 are
reported in Figures 5 and 6. We first observe that each curve has an asymptotic slope of -1,

i.e., the order of the method is 2 (in 2D the average field point spacing is hs ∝ N
−1/2
f ); again,

these curves clearly show that a right choice of the shape parameter ε heavily affects the error:
more than two orders of magnitude of difference are observed passing from ε = 6.0 to ε = 3.5 in
Figure 6.

As stated before, a comparison of previous convergence curves confirm that the influence of
Nc/Nf ratio is negligible for ε far from ε∗, i.e., the upper curves (Figures 5 and 6) have similar
or identical magnitude; for this reason from now on we’ll consider only Nc/Nf = 2, as it is the
cheaper choice in a computational sense.

6.2. Test case B: thickened corner, q with singularity
This problem is defined again on a square domain Ω = [0, 1]2, but both field and collocation
point distributions are thickened in the corner around the x − y coordinates origin O =: v1

(τ1 > 1), as reported in Figure 7. We employed a thickened distribution around v1 because the
following reference solution, defined in polar coordinates, is singular in that point:

φan =
√
r (23)
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1

1

0
0 x

y

Figure 7. Field point distribution for test case B: τ1 = 3.0, f1 = 3.0, Nf = 17462.

(r = ‖x‖); its Laplacian is therefore :

q = ∇2φan =
r−3/2

4
(24)

The singularity of this solution is twofold: φan has infinite first derivatives in v1 and its
Laplacian, which is the RHS of the problem, goes to infinity with order 3/2 in the same point1;
thus, this is a very severe problem. The number of local iterpolation points was again n = 9.

No ε∗ test has been conducted in this case, thus convergence curves of Figures 8-9 have been
computed only for two distinct shape factors ε = 1.5, 3.5 , but various combinations of thickening
parameters τ1, f1 have been considered.

In theses figure the convergence curves for a uniform point distribution are also shown; the
comparison of the thickened distribution curves with the uniform distribution ones clearly reveals
that in this case the employment of a thickened distribution around the singularity allows a much
better resolution of the singular problem, maintaining a second order accuracy.

The influence of point distribution thickening parameters τ1, f1 around v1 is also visible in
the same Figures (8-9); despite their little influence, it can be appreciated how an increase in τ1

1 The q term for the boundary collocation point xc
k lying on the corner v1, where the Laplacian is infinite, should

be corrected as qk = (h/2τ1)−3/2.
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– – – Uniform distribution
— · — τ1 = 2.0, f1 = 3.0
- - - - τ1 = 3.0, f1 = 3.0

—— τ1 = 4.0, f1 = 4.0
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Figure 8. Test case B. Convergence curves
for ε = 1.5 .
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Figure 9. Test case B. Convergence curves
for ε = 3.5 .

and f1, i.e., a thicker and localized distribution around the corner, helps in the resolution of the
singularity.

Finally, the influence of shape factor ε (Figures 8-9) seems not to be of primary importance
in this case, but other computations should be performed to confirm this fact; however, greater
shape parameters ε reduce the ill-conditioning problems [16] when dealing with finest point
distributions (i.e. high Nf / large thickening parameters τi).

6.3. Test case C: irregular domain, q with singularities
This problem is defined on the polygonal domain reported in Figure 11 with thickened point
distributions around vertices v2 (τ2 = 3.0, f2 = 6.0), v8 (τ8 = 2.5, f8 = 12.0) and v9

(τ9 = 2.5, f9 = 12.0). These vertices correspond to the points where the following reference
solution is singular:

φan = ‖x− v2‖+
1

4
(‖x− v8‖+ ‖x− v9‖) (25)

Its Laplacian is therefore :

q = ∇2φan =
1

‖x− v2‖
+

1

4

(
1

‖x− v8‖
+

1

‖x− v9‖

)
(26)

This reference solution is less severe than the one of test case B because φan has finite first
derivatives, but its Laplacian goes to infinity with order 1 in the three vertices v2,v8 and v9

2.

2 The q term for the three boundary collocation points corresponding to these three vertices vk, where the
Laplacian is infinite, should be corrected as q = 2ak(h/2τk)−1, with ak the respective coefficient as in (26).
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– – – Uniform distribution, ε = 5.0
— · — ε = 8.0
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Figure 10. Test case C. Convergence curves for complex shaped domain of Figure 11.

10
0

0 5

v2

v8v. 9

Figure 11. Field point distribution for test case C: Nf = 13793.

Again, n = 9 neighbor interpolation points are employed. Convergence curves are shown in
Figure 10, where the convergence curve for a uniform distribution (ε = 5.0) is also reported for
comparison; three shape factors ε = 3.5, 5.0 and 8.0 are considered.

From the previous Figure (10) it can be observed how, again, the lowering of shape factor
ε reduces the total error e, maintaining a second order accuracy; this is observed at least till
Nf = 105, beyond which the use of small ε (3.5,5.0) with fine point distribution causes ill-
condition instabilities.

The advantage in the use of a thickened point distribution around singolarities is not so
evident in this case, although some improvement exists; this little difference is due to the less
severe singularities employed in this test case.
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6.4. CPU times
Typical CPU time for a single complete computation, including point distribution processes,
coefficients computation (requiring a space partitioning scheme with associated data structures)
and least square solution (MATLAB R© built-in solver), was in the order of seconds even for the
cases where large number of points were employed (Nf ≈ 105, Nc ≈ 4 · 105) on a modern laptop
(quad-core Intel R© i7 2.6GHz).

7. Conclusions and future work
In this work a Least Squares Collocation Meshless Method is used for the numerical simulation of
heat transfer problems, in the specific case of 2D steady state conduction. The peculiarity of this
approach is the flexibility against complex shaped domains because the traditional mesh/grid is
no longer required.

Three particular test cases have been considered and for each test case several convergence
curves have been computed to highlight the numerical properties of this approach. Each test
showed good convergence properties (second order in space), even when dealing with singular
data and irregular domains; in these cases thickened point distributions around singularities
have been employed to improve the solution.

These numerical properties confirm that this method is an efficient and versatile tool for the
numerical simulation of practical heat conduction problems in complex shaped domains.

The reported activity will be carried on in order to outline advantages and disadvantages of
this specific approach for a wider range of cases. Further analyses will be conducted considering
other domain geometries (not necessarily polygonal, 3D), various boundary conditions and
transient (unsteady) problems; a significant step from a computational efficiency point of view
will be a parallel Graphics Processing Unit (GPU) implementation of the procedure, currently
under study.
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