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Abstract. In order to describe the cell dynamics of T-cells in a patient infected with HIV, we 
use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential 
Equations that describes the evolution of healthy, latently infected, infected T-cell 
concentrations and the free viral cells. Different parameters in the equations give different 
dynamics. Considering the concentration of these types of cells is known for a particular 
patient, the inverse problem consists in estimating the parameters in the model. We solve this 
inverse problem using a Genetic Algorithm (GA) that minimizes the error between the 
solutions of the model and the data from the patient. These errors depend on the parameters of 
the GA, like mutation rate and population, although a detailed analysis of this dependence will 
be described elsewhere. 

1. Introduction 
Modelling the dynamics of HIV and AIDS is important because this disease represents a main 

concern in public health policies, as infected people are counted in dozens of millions around the 
world [1]. There are two important concerns: prevention and treatment. The treatment involves a 
constant monitoring of each patient, specifically the dynamics of infected cell concentrations in the 
blood and is the subject we focus on in this manuscript. 

From the clinical point of view, what is required for the present model is that an essential 
component of the immune system are the Lymphocytes which destroy invaders. Lymphocytes are of 
two types B-cells and T-cells, being B-cells antibody factories producing antibodies as fast as they can 
and also clone themselves, whereas T-cells either direct the activity of B-cells (called CD4+T-cells) or 
act as suppressors (called CD8+T-cells) destroying infected cells and thus damp out the activity of the 
immune system. The AIDS has three stages, one including the initial infection, a second one of latency 
and the third one corresponding to a runaway destruction of the immune system. During the latency 
lapse healthy T-cells are infected although its number remains high. When the concentration of T-cells 
decreases and that of HIV virus cells increases, it is the AIDS stage. 

In practice, as an example, cytometry is a procedure useful to count the concentration of 
healthy, latently infected and infected T-cells in the blood stream, for instance using the dispersion of 
laser light, that depends on the enzymes covering the cells [2]. Knowing the concentration of CD4+T-
cells it is possible to wonder about modelling the evolution of the different cell populations. Among 
the various models trying to describe the dynamics of CD4+T-cells (see for instance [3,4]), a simple 
one describing the phases of latency and the destruction of the immune system is Perelson's model 
[5,6,7].  

In general, a model is expected to describe clinical data and make predictions. Starting from 
patients data we define the inverse problem of determining the parameters of the model. Knowing the 
parameters allows one to determine the evolution of the concentration of healthy and infected CD4+T-
cells, so as possibly infer the conditions during an early stage of the disease.  

Assuming Perelson's model, we intend to solve the inverse problem and reconstruct the 
coefficients of the evolution model for the cell populations, out of a time series that in a realistic case 
might correspond to the data taken from a particular patient. This means, we assume that there is a 
Perelson system of equations for each patient with different parameters. In this sense, what we propose 
is a personalized set of equations that can be used to diagnose and decide on the treatment of each 
particular patient. This paper is about testing a method to estimate the parameters characterizing a 
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given patient. Our method to solve this inverse problem uses Genetic Algorithms (GAs) to find the 
best combination of parameters that minimizes the difference between the experimental data (in our 
case generated numerically) and the numerical solution to the Perelson's model.  

The paper is organized as follows. In Section 2 we describe the particular model of T-cell 
populations, whereas in Section 3 we present the GAs applied to estimate the parameters of the ODE 
system associated to the model. In Section 4 we present some results and in 5 draw some final 
comments. 
2. The T-cell dynamics model 

Among the various models describing the evolution of T-cell in the blood stream in patients, in 
order to show how our method works, we use the basic Perelson model [5]. Following [8], the 
variables that evolve under this approach are the healthy T-cells ( X ), latently infected T-cells (Y ), 
actively infected T-cells ( Z ) and free viral cells (W ), which obey the following set of non-linear 
coupled ODEs 
 

dX

dt
 s rX 1

X Y  Z

xmax









X X  k1XW ,

dY

dt
 k1XW YY  k2Y ,

dZ

dt
 k2Y Z Z,

dW

dt
 NZ Z  k1XW WW

 (1) 

 
Here s  is the rate at which T-cells enter the blood stream; r  grades the logistic growth rate in the 
number of CD4+T cells, and their evolution as a function of actively infected and latently infected 
cells; the concentration of destroyed T-cells is proportional to the population of infected cells with 
clearance k1; the coefficient X  is based on how patients recover after therapy; xmax  is the maximum 
possible CD4+T concentration; Y  is the death rate of latently infected CD4+T cells; Z  is the death 
rate of actively infected CD4+T population, W  is the death rate of free virus cells, k1 is the rate of 
infection of CD4+T by the free virus, k2  is the rate at which latently infected CD4+T cells convert to 
actively infected cells and N  is the number of free virus produced by lysing a CD4+T cell. 

Solving system (1) is straightforward provided initial conditions and specific values of the 
coefficients/parameters. We solve these equations using a 4th order accurate Runge-Kutta integrator 
and graphically the solution is shown in Figure 1 for the parameters in Table 1, that we set following 
[8]. In this case the solution approaches asymptotic values in all variables. 

In order to test our approach, this solution will work as our experimental data, consisting of the 
four time series of ( ˜ X , ˜ Y , ˜ Z , ˜ W ) which in a realistic case would be the actual measurements from a 
patient's blood stream.  
 
 

variable value units variable value units
s  10 mm3day1 r  0.03 day1  

xmax 1500 mm3 X  0.02 day1  
Y  0.02 day1  Z  0.24 day1  
W  2.4 day1  k1 .000024 mm3day1 
k2  0.003 day1  N  500  

X0  500 mm3 Y0  0 mm3

Z0  0 mm3 W0  0.001 mm3
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Tabla 1. Parameters used to construct an illustrative solution. Such solution will also be considered as 
data from a patient, being these parameters the target to be found by the GA. X0,Y0 ,Z0,W0  are the 
initial conditions of the four variables. 
 

 
 
Figure 1. Integration of the system during 2000 days for the parameters in Table 1. All the variables 
reach a stationary state within this time domain. The horizontal axes are in days. 
 
3. Parameter estimates using Genetic Algorithms 

The initial conditions and the various parameters of system (1) are patient dependent. Counts of 
the four variables before or during treatment work as experimental data that should be fit by the 
solutions of the system. Thus, the parameters in these equations are particular of each patient 
submitted to his own treatment. In order to foresee the evolution of the patient as a function of 
experimental data it is necessary to estimate the whole set of coefficients in system (1). In this 
manuscript we present an efficient method that estimates these parameters using GAs. 

As mentioned before, instead of using realistic data from patients to test our method, we 
consider the solution of the system for the parameters in Table 1 as our time series data. The 
advantage of this approach is that we know the values of the parameters and we can measure the 
accuracy in the parameter estimate of our GAs. 

Inverse problem strategy. We assume each patient is described by a Perelson system of 
equations with unknown coefficients. Therefore we set the inverse problem as an optimization 
problem where the variables are the coefficients of system (1). In order to solve this problem we use a 
Genetic Algorithm described as follows. We assume that the array of numbers 
{s,r, xmax,X ,Y ,Z ,W , k1,k2, N} is the DNA of an organism, and each entrance is a gene. With 
this assumption the GA contains the following elements 

 
- Initial Population. We define an initial population of j 1,..., Norg  organisms with random entrances 

with the values of the parameters of the data, but randomly shifted within a given range 0   1. For 
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example, we chose the parameter s  to be s 10(1), with   a random number between 0 and 1. 
Norg  is the size of the population of organisms we start the GA with. 

- For each organism j , a particular system of equations of type (1) is defined and is solved 
numerically. 
- The resulting solution for each organism is compared with the data ( ˜ X , ˜ Y , ˜ Z , ˜ W ). 
- We calculate a weighted L1(Et, j ) norm of the error between the solution and the time-series for 

organism j . Considering each of the variables X,Y , Z,W  has values within different scales, the error 
is measured as follows: 
 
 

L1(Et, j ) 
| X j  ˜ X j |

˜ X j


|Yj  ˜ Y j |
˜ Y j


| Z j  ˜ Z j |

˜ Z j


|Wj  ˜ W j |
˜ W j











i

  

 
 
where i  labels a summation over the total number of days in the time series. We define the fitness of 
the organism j  as Fj 1/ L1(Et, j ) and classify the organisms from the best to the worst fitted. 

- The selection: Using a roulette selection algorithm [9,10], we choose a couple of organisms, one 
called the mother and the other the father, with the only restriction that they cannot be the same. Each 
couple will generate a new organism using the crossover mechanism described below. We select 
Norg  2 couples to create the same number of children that will populate the next generation. The 

remaining 2 organisms missing to complete the next generation will be the copies of the 2 best fitted 
DNAs of the current generation. 
- The crossover: We choose randomly 5 genes out of the 10 of the mother. Then complete the DNA of 
a child with the 5 genes from the father not chosen from the mother.  
- Mutation: Every individual has 40% probability to mutate. Every gene of a selected individual is 
forced to mutate within %  of its current value. 

This process is repeated in a non-strandard way. Consider that t k  labels the time in the time 
series (in days) and that ˜ X k , ˜ Y k , ˜ Z k , ˜ W k  are the data at t k . The GA starts at t 0  and evolves the 
necessary number of generations to find the DNA that produces a numerical solution X1,Y 1, Z1,W 1  
with coefficients {s1,r1, xmax,1,X ,1,Y ,1,Z ,1,W ,1,k1,1,k2,1, N1}, with an error within a given tolerance 

  from the data. These coefficients are then used as the initial guess to evolve another number of 
generations to fit the variables at t 2  and so on and so forth. 

 
4. Results 

We thus use the GA to evolve the initially randomly generated organisms within an initial 
departure  . In Fig. 2 we show the solution using the DNA of the fittest organism found after a 
number of generation using   0.1 and two different values of   0.1,1. Notice that the values of   
correspond to parameters possibly at 10 and 100% distant from the parameters used to generate the 
data. 
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Figure 2. Solution calculated using the coefficients corresponding to the best fitted organism of a 
given generation with   0.1,1 and tolerance  1. These are compared with the data from Figure 1. 
The horizontal axes are in days. 
5. Final comments and conclusions 

We implemented an application that uses GAs to estimate the parameters of a Perelson's model. 
This means we solve the inverse problem which in practice implies that, within a given tolerance, we 
have a method to assign a particular set of equations to a particular patient, based on the T-cell 
concentration measurements. For this we do not use patient's real data, but a numerical solution, and 
the GA tracks down the parameters these data were constructed with. 

A simple improvement of our method can include the initial conditions of the four variables as 
genes of the DNA of our organisms. This would allow to estimate X,Y ,Z,W  during the latency 
period and possibly bound (going backward until the initial conditions) a lapse of infection. It is 
believed that early phases of HIV contain crucial information about the further immune response and 
viral dynamics and is expected to influence the progression of AIDS [11]. 

Our method works for this non-linear system of equations and is expected to work for 
straightforward generalization of Perelson's model as well. The complexity of this simple model will 
allow us to engage the parameter estimation of more elaborate problems, for instance the patient's 
parameter reconstruction based on the response to treatment considering interrupted therapy 
[11,12,13,14]. 
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