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Abstract. A stationary power plant with two Carnot-like cycles is optimized. Each cycle has the 

following irreversibilities: finite rate heat transfer between the working fluid and the external heat 

sources, internal dissipation of the working fluid, and heat leak between reservoirs. The optimal 

allocation or effectiveness of the heat exchangers for this power plant is determined by applying, 

two alternating design rules: fixed internal thermal conductance or fixed areas. The optimal 

relations obtained are substituted in the power and the maximum power, according to the 

isentropic ratio of each one of the Carnot-like cycles of the power plant, is calculated.  

Additionally, the efficiency to maximum power is presented.  

 

1. Introduction 

Recently in [1], a methodology of optimization was applied to an irreversible Carnot-like stationary 

power plant, where the characteristic parameter was the allocation or effectiveness of the heat 

exchangers of this plant. This standard irreversible Carnot-like cycle has been studied at length for 

many objective functions, different transfer heat laws and several characteristic parameters (see [2]-

[7] for further details). 

 

[8-11] have presented a n-stage combined Carnot cycle optimizing the specific power and 

efficiency for the isentropic temperature ratios ; 1, . . . . . .
j

x j n , and effectiveness. In this last case, 

the law of heat conduction was used. 

 

In this paper, we extend the results of allocation or effectiveness from one cycle to a combined 

cycle with two Carnot-like cycles using the Bellman’s Principle [9], which has been successfully 

applied in [8 and 9]. We found optimal relations for two constraints (i.e. design rules): constrained 

internal thermal conductance or fixed total area of the heat exchangers from the hot and cold sides. 

Finally, the maximum power and the efficiency of maximum power for the stationary power plant 

with two Carnot-like cycles are calculated.  

 

2. Power plant with two Carnot-like cycles  

The stationary power plant with two Carnot-like cycles is shown in Figure 1. Each cycle satisfies 

the conditions expressed in [2, 4]: leak heat 
.

Q and finite heat transfer rates Q
×

i
 , and internal 

dissipations of the working fluid expressed by constants ( 1, 2 )
i

I i  , such that 

1
1; 1, 2

i

i

S

i S
I i





    [4] in which the Claussius inequality becomes equality (see [3]). Each cycle of 

the power plant consists of two isothermal and two adiabatic processes, denoting,for each cycle the 

temperatures of the working fluid during the hot and cold isothermal processes as Ti and Ti+1 

(i=1,2,3), respectively, and the end temperatures as TH and TL.  

 

Following [1 and 5], the thermal efficiency of the power plant is given by: 

 

1 2
( , )

P

f x x P Q
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   (1) 

 

 

where 2

2 1

i

i

i

T
x

T


  correspond to the isentropic temperature ratio for each cycle  1, 2i i  , P  is the 

power of the plant, Q



is the leak heat and the function
1 2

1 2 1 2

1
( , )

1
f x x

I I x x



. Note that this 

functional form for one cycle has only appeared in [1, 2, and 5]     

   

 
 

Figure 1: A power plant stationary of two Carnot-like cycles with linear leak heat and finite heat 

transfer rates, and internal dissipations of the working fluid  

 

According to the second law of Thermodynamics, for each 1, 2i  , we have [26]: 

. . . .

1 1 2 22 1 3 2
;Q I x Q Q I x Q  ; thus, 

. . .

2 2 1 13 2 1
Q I x Q I x Q   so that, the efficiency is given by: 

 

.

.. . .. . .

1 2 1 2 11 3 3 1

. . . . . .

1

1
1

H L

H H H H H

I I x x QQ Q QQ Q QP

Q Q Q Q Q Q



 
  

     
 
 
 

    (2) 

 

From equation (5), 
.

1

1 2 1 2
1

P
Q

I I x x



         (3) 

 

and equation (3), (1) is obtained.  

 

Now, let  1, 2
i

z x i  , the Corollary given at [1], extend to: 

 “The power P achieves a maximum value in
m p

z  if and only if the efficiency   achieves a 

maximum value in the value:
m p m e

z z ” 

The proof is similar to that presented in [1]. It is easy to see that in the computations of the proof for 

the Corollary, no transfer heat law has been used. Thus, in the optimization of the power plant with 
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two Carnot-like cycles, with respect to ,z  it is enough to find the maximum power by,  

2

2
0  a n d  0| |

m p m e m p m e
z z z z

P P

z z
 

 
 

 
       (4) 

The optimization performed, with respect to ,z  is a property independent from the heat transfer law. 

As a result, o rz   , depending on which design rule is applied.  

 

3. Optimal relations for the allocation and effectiveness of the power plant’s heat exchangers 

In this section,
1 2
,x x will be fixed and we will assume that the law of heat transfer can be any law, 

including heat leak. Next, we will discuss the following two design rules: fixed internal thermal 

conductance or fixed areas for the heat exchangers, which will be alternately applied.  

 

The first design rule is that the internal conductance of the Carnot-like cycle is constrained 

to:
3

1

i

i





  , where  is a constant applied to the allocation of the heat exchangers from the hot 

and cold sides; with the same overall heat transfer coefficient U  by unit of area A  in both ends of 

the cycle  1, 2i i  and  1, 2, 3
i

i   are the thermal conductance correspondent to the finite heat 

transfers of the hot/cold sides for this cycle, respectively. Thus, 
3

1

i

i

U A



   where
1

,
i i

A A


are heat 

transfer areas on hot/cold sides of the cycle  1, 2i i  . The second design rule is that the total area 

is constrained by:
3

1

i

i

A A



 ; where  1, 2, 3
i

A i  are the heat transfer areas on the hot and cold 

sides for the cycle i  1, 2i  , respectively. Now, the total area A is fixed but, when distributed, it 

has different overall heat transfer coefficients and hence different effectiveness on each one of the 

hot and cold sides. How
i i i

U A   (see [1, 12]), then
3 3

1 1

i

i

i i i

A A
U



 

   , where  1, 2, 3
i

U i  are 

the overall heat transfer coefficients on the hot and cold sides of the cycle  1, 2i i  , respectively.  

 

From the Corollary of the section 2, it is enough to find “the maximum power of each Carnot-like 

cycle  1, 2i i   for these two design rules applied alternatel”. Indeed, from [3] the dimensionless 

power output for the cycle, i is given by:  

1

1

2 1

1

i

i i

i ii

i I

i i

IP
p

T
 









 


 ,      (5) 

where
i

  is the end temperature ratio of the cycle 1, 2i  . The numerator of (5) is obtained from 

applying the conduction heat law and optimizing it with respect to
i

x ; 1, 2i  .  

 

Next, if we apply the Bellman’ Principle [9]: “to state that every part of an optimum path is 

optimal", we determine the optimal allocation or effectiveness of the heat exchangers.   
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3.1 Constrained internal thermal conductance 

The three thermal conductances can be written as ; 1, 2 , 3
i i

U A i   , where U  is overall heat 

transfer coefficient and ; 1, 2 , 3
i

A i   are the available areas for heat transfer. Thus, for the first 

optimization we can assume for this first design rule:
1 2 1

    , where 
1 3

     is supposed 

to be a constant. Equivalently, 1 2

1

1
 




. Fixing the temperature 
j

T ( 3, 4 )j  and applying only 

for the first cycle, 1 1 2

1

1

 1;  1
a

a
 

 


. In parameterizing, 1 2

1

1 1

; 1 a
 

   
 

. According to the 

equation (6), in optimizing 
1 1

1
1-

1

a I

a 

 

 
 
 

 according to  , we obtain 
1

1

1

1 I

 



. Solving, 

1 1 2

1

1 1

1 -
;

a
I

 

 
  so

2 1 1
I  . For the second optimization, the constraint is now 

2 1 3

2

1
a  




, with 
2 1

1a I  . In parameterizing, 31

2

2 2

;1 a


   
 

. Similarly, in 

optimizing 
2 2

2
1-

1

a I

a 

 

 
 
 

 according to  , we obtain 
2

2 2

1

a I

 



. Solving, 32 2

2

2 1

1 a
I



 


  ; 

so that 
3 2 1

I  .  

 

In summary, the optimal conductance is:  

2 1 1 3 2 1
;I I             (6) 

and 
2

3 0
0

, 1
j

j

a I I


   . 

 

3.2 Constrained areas of heat exchangers 

For simplicity, we suppose
2 1

1I I  . Applying the second design rule
1 2 1

A A    where 

1 3
A A   , 1 2

1 2

1 2

;A A
U U

 
  , then

1 1 1 2
a u    , where 1

2
1 1

; 1
U

U
u a  . In 

parameterizing, 1 2

1
;1 a

A A

 
    . From equation (5) 

 

1

1 1

1

1-

1

a

a u 


, the first optimization with 

respect to  , gives 
1

1

1 1
1

u

a u

 



. Then, 
 1 11 1

1 1

1 11 u aa

u





 
 . Solving, 1

2

1 1

;

a u


  so 

that 1

2

1 1

A
A

a u

 , and the results of [1] are recovered. For the second optimization, the constraint is 

now 3

2 1

2

A
a A A

u
  , where 1 1

1 1

1

2

a u

a u
a



 ; 1

3
2

U

U
u  . In parameterizing, 31

2
;1

AA
a

A A
    . Now, 

from (5)

 

2

2 2

1

1-

1

a

a u 


. The second optimization with respect to , gives, 
2

2

2 2
1

u

a u

 



and 
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 2 22 2

2 2 2

1 11

1

u aa

a u





 




. Thus,
 2 2

3 1

2

1 1u a
A A

u

 
 . So that, the optimal areas, are:  

 

 2 21

2 3 1

1 1 2

1 1
;

u aA
A A A

a u u

 
         (7) 

and 
 2 2 2

3

2 2 2

1
1

I u a
a

I a u

 
 



. 

 

4. Maximum power and efficiency to maximum power 

Let 
1 2
,P P be the power of cycles 1 and 2, respectively, of  Figure 1. For the first design rule, the 

maximum power of the power plant will be given by:  

  
 

 

2

2

1 2 m a x

3 2 1 2

1I U A I

P P

a I I a



 



  ;     (8) 

and for the second design rule, the maximum power will be given by: 

 
   

     

2

3 2 2 1

1 2 m ax

1 1 2 2 3 2 2 3

1 1

1 1

H
T a a a A U I

P P
I u a a a a a a

 

 
   

  ,    (9) 

where 
1 2

I I I ; L

H

T

T
    using the notation of the subsections 3.1 and 3.2, respectively.  

 

We can show (8) as follow:   

   

   

   

2 2
31 2 2

1 1 2 2

1 1 2

2 2
2 2

1 1 1 2 2

1 2

2 2
3

1 1 1 1 1 2

1 2 1

1 1

1 1

1

H H

H

P P T
I I

T a T

I T
I I I

I a T

I I I I
I a


 

 

 


  




   

   

   

 

where we apply equation (6). In optimizing according to
1 1

I  : 

 
 

   

 1 2

1 3

2

1 2

1 2 3 1m a x

1 2 1 3

2 2

1 2 2 1 2 1 2

1

3 1 2 2

1

1 1

H

H I a

I I

P P T
I a

I I I U A I I

T

a I a I
 



 
 

  



 


 

 

 

 

because of  1 2 3 1 1 1 2 1 1 1 2
1U A I I I I               , so, 

1

3

U A

a
  .  

Now from [10], we can obtain the efficiency to maximum power: 

 1

1
Q

L

TH

I

m p













  ,       (10) 
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where
3

1

1
i

i




   . Equation (10) is obtained similarly.  

 

5. Conclusions 

We have found and determined the optimal allocation and effectiveness of heat exchangers of a 

combined cycle with two Carnot-like cycles. Moreover, these relations can be satisfied for other 

operation regimes, e.g. algebraic combination of power and/or efficiency that have thermodynamic 

meaning and satisfy imposed power conditions (equation (5)). Nevertheless, the optimal isentropic 

temperatures ratios depend on the heat transfer law and the operation regime of the engine as 

discussed in [1]. Additionally, the maximum power and its corresponding efficiency to maximum 

were calculated. The equations (6-10) can be extended to a power plant with n-Carnot-like cycles of 

the model presented here. However, the latter requires a comprehensive study of the implications 

for the power plant considered. We will study such implications in our future work. 
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