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Abstract. A novel method for solving wave equations with spatial dispersion is presented,
suitable for applications to ion cyclotron resonance heating. The method splits the wave operator
into a dispersive and a non-dispersive part. The latter can be inverted with e.g. finite element
methods. The spatial dispersion is evaluated using a wavelet representation of the dielectric
kernel and added by means of iteration. The method has been successfully tested on a low
frequency kinetic Alfvén wave with second order Larmor radius effects in a nonuniform plasma
slab.

1. Introduction
Plasma waves with perpendicular wavelengths comparable to the ion Larmor radius will
experience a non-local response; an acceleration at one point along the gyro orbit will induce
a current along the whole orbit. Consequently, the dielectric response is an integral operator,
integrating the acceleration along the gyro orbit, which will depend on the wavelength, i.e. it is
spatially dispersive.

Numerical methods, such as finite element (FE), finite difference (FD), and Fourier spectral
methods, are efficient for solving non-dispersive electromagnetic problems. These methods
can be used in certain limits for spatially dispersive problems, e.g. for calculating fast-wave
propagation in fusion plasmas during ICRF with negligible spatial dispersive effects [1]. In
general, the numerical modelling of waves in spatially dispersive media tends to be significantly
more complicated than similar non-dispersive electromagnetic problems, due to its integral
character. The inclusion of spatial dispersion effects to all orders in finite Larmor radius was first
solved by Sauter et al [2], who derived a set of integro-differential equations for the wave fields
in a plane slab which was solved with FE discretisation. Spatial dispersion can also be handled
by Fourier spectral methods (see e.g. [3]), but have the disadvantage of producing large and
dense matrices. Such matrices are time consuming to invert and memory expensive. Recently,
an alternative technique has been proposed for plasma waves with spatial dispersion that uses
either FE or FD methods and iterate on the induced current [4].

In this study we extend the method proposed in [5] by generalising the operator splitting. We
propose to identify non-dispersive parts by evaluating the dispersive response at an approximate
wave vector. The operator splitting is performed between the spatially dispersive and non-
dispersive parts of the wave operator. The dispersive part is considered as an inhomogeneous
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term in the wave equation, which is solved by means of iteration with Anderson acceleration [6].
The evaluation of the dispersive response is performed using a Morlet wavelet representation.

The paper is organised as follows: In section 2, the iterative procedure is formulated and
the relation to kinetic Alfvén waves is described. In section 3, the spatially dispersive response
is evaluated using wavelets. In section 4, a numerical example is presented, showing that the
iteration procedure works. Conclusions are drawn in section 5.

2. Electromagnetic wave equations with spatial dispersion
The problem we are aiming to solve is a wave equation with a spatially dispersive response

L[E](r) = iωµ0Jant(r) , (1)

where

L[E](r) ≡ ∇×∇×E(r)− ω2

c2
K[E](r) , (2)

K[E](r) ≡
∫

dk

(2π)3

∫
dr′K(r,k)E(r′) exp

[
ik · (r− r′)

]
. (3)

The dielectric kernel K(x, k) is described in Ref. [7, 8].
When studying the propagation of a particular wave (e.g. the fast wave during ICRF), a

solution to Eq. (1) can be obtained by assuming that the wave-vector is given by an approximate
dispersion relation, kD(r). For example, when modelling ion cyclotron heating a large part of
the wave is usually well described by a fast-wave dispersion relation [9]. The wave equation can
then be written on a form where the dielectric response is no longer spatially dispersive

L0[E](r) ≡ ∇×∇×E(r)− ω2

c2
K(r, kD(r))E(r) = iωµ0Jant(r) . (4)

This equation can be solved using standard FE or FD methods [1].
In this report we propose to solve Eq. (1) by first splitting the wave operator L = L0+(L−L0)

and formally rewriting the equation on the form

E(r) = −L−10 [(L − L0)[E](r) + iωµ0Jant] (r) , (5)

where L−10 can be generated using FE or FD methods. Eq. (5) can be solved using a fixed-point
iteration scheme. This formulation is most effective when the spatial dispersion is weak, such
that L and L0 have similar solutions. However, the formulation is not restricted to this limit.
In fact, using a fixed point iteration with Anderson acceleration [6, 4], as used in this report, a
wide range of inhomogeneous problems with strong spatial dispersion can be solved.

2.1. Second order ODE describing Kinetic Alfvén waves
To study the properties of the proposed scheme, Eq. (5), we will study the solutions to an ODE
of second order. This equation can be derived from Eq. (1) when considering kinetic Alfvén
waves in a plasma that is homogeneous along straight field lines, while assuming that the ratio
of the ion Larmor radius over the wavelength is small. When aligning the coordinates such that
the magnetic field is in the z direction and the perpendicular wave number is in the x direction,
the wave equation may be written as [9]

n2‖E(x)−
∫ ∞
−∞

dk

2π

∫ ∞
−∞

dx′ exp
[
ik(x− x′)

]
Kxx(x, k)E(x′) = 0 , (6)
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where the Kxx is the dielectric tensor component in the (x, x)-direction, n‖ is the parallel
refractive index and E(x) is the x-directed electric field Fourier transformed in the z-direction.
By expanding the dielectric tensor in the perpendicular wave number and neglecting the weak
dependence on the parallel wave number, Kxx(x, k) ≈ K0(x)−K1(x)k2⊥, an ODE is obtained(

∂2

∂x2
+ f2(x)

)
E(x) = 0 , (7)

where f2(x) = (K0(x)− n2‖)/K1(x).

3. Wavelet representation of the wave equation
Dielectric responses that include finite Larmor radius effects form an integral operator, or
alternatively a differential operator of infinite order. To evaluate such operators, the basis for
describing the electric field should ideally have inifinite number of derivatives. In inhomogeneous
media, a spatially localised basis is preferable for computational efficiency. We therefore propose
the use of a Morlet basis and continuous wavelet transform. The Morlet wavelet not only satisfies
the conditions above, but also has a narrow Fourier spectrum such that harmonic functions have
a narrow wavelet spectra.

3.1. Continuous wavelet transform
The wavelet transform is performed using the basis

ψa,b(x) =
1√
a
ψ

(
x− b
a

)
, (8)

where

ψ(x) = π−
1
4 e−

x2

2
(
eiσx − κ

)
(9)

is the complex Morlet wavelet (see Fig. 1) with κ = e−σ
2/2 and σ = 6. This choice of basis is

localised in both real space around x = b and in wave number around k = σ/a (the Fourier
transform is a Gaussian with width 1/a, see Fig. 1). The wavelet transform, WT, is defined
as [10]

Ea,b = WT [E(x)] (a, b) =

∫ ∞
−∞

E(x)ψ∗a,b(x)dx , (10)

with the inverse transform

E(x) = WT−1 [Ea,b] (x) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

Ea,bψa,b(x)
dadb

a2
, (11)

Cψ = 2π

∫ ∞
−∞
|ψ̂a,b(k)|2dk

k
, (12)

where ψ̂a,b(k) is the Fourier transform of ψa,b(x).

3.2. Wavelet representations of the dielectric kernel
The spatially dielectric response in the wave equation, Eq. (1), can be expressed using a Morlet
representation of the electric field (for simplicity, this derivation will be performed assuming an
electric field that only depends on a single coordinate x)

K[E](x) =
1

Cψ

∫ ∞
−∞

da

a2

∫ ∞
−∞

db

∫ ∞
−∞

dk

2π
K(x, k)Ea,bψ̂a,b(k)eikx . (13)
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Figure 1. Wavelet basis defined in Eq. (8). Left: Solid black and dashed red lines represent
the real and imaginary part of ψ1,0(x), respectively. Right: Fourier transformed complex Morlet

wavelets, ψ̂1,0(k) (solid black) and ψ̂2,0(k) (dashed red).

Since ψ̂a,b(k) is localised around k ∼ σ/a (the wave number of the eikonal factor in the Morlet
basis) one can make the expansion

K(x, k) = K
(
x,
σ

a

)
+
(
k − σ

a

) ∂K(x, k)

∂k

∣∣∣
k=σ

a

+
1

2

(
k − σ

a

)2 ∂2K(x, k)

∂k2

∣∣∣
k=σ

a

+ . . . . (14)

Note that when K is a second order polynomial in k, such as for the kinetic Alfvén wave in
Eq. (7), this expansion is exact. The dielectric response is then given by an inverse wavelet
transform

K[E](x) = WT−1
[
Ka,b

(
x,
σ

a

)
Ea,b

]
(x) (15)

Ka,b(x, k) = K(x, k) + i

(
x− b
a2

)
∂K(x, k)

∂k
+

1

2

(
1

a2
− (

x− b
a2

)2
)
∂2K(x, k)

∂k2
+ . . . . (16)

The coefficients in this expansion are Hermite polynomials. In the derivation of Eq. (16), the
terms proportional to κ have been neglected, since they give a negligible contribution.

3.3. Wavelet representations of the kinetic Alfvén wave equation
The equation for the kinetic Alfvén wave, Eq. (6), can be expressed using the dielectric response
in Eq. (16)

f2(x)E(x) = WT−1
[{
k2 + i2

(
x− b
a

)
k −

(
1

a2
− (

x− b
a2

)2
)

+ . . .

} ∣∣∣
k=σ/a

Ea,b

]
(x) . (17)

The same equation can be derived by inserting the Morlet representation into Eq. (7)

f2(x)E(x) = − ∂2

∂x2

{
1

Cψ

∫ ∞
−∞

da

a2

∫ ∞
−∞

dbEa,bψa,b(x)

}
. (18)
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Figure 2. Solution to Eq. (17) and comparisons with the WKB solution of Eq. (18). Left: The
real and imaginary parts of the electric field in blue, with the WKB solution is indicated by
crosses. Right: Wavelet representation Ea,b of the electric field with k = σ/a.

4. Results
The ODE in Eq. (17) has been solved on an interval (0, 120) for f(x) = 3

2 + 1
2πatan([x− 60]/5),

such that the solution to the local dispersion relation have wavelength between π and 2π.
Morlet wavelets are defined on an infinite interval. Applying them to a finite interval means

the wavelet transform is no longer invertable near the boundaries. To ensure that the wavelet
transform can be inverted inside our domain, the transform has been performed in an extended
domain (−30, 150). In the extended layers, here called the “matched layers”, a harmonic solution
has been imposed that matches the dispersion relation at the boundary. The matched layers
also provides the boundary conditions to the differential equation; in the layer to the left a
right propagating wave is imposed with unit amplitude, Ex = exp(ikx), while at the right
boundary a matching procedure is introduced to identify the complex amplitudes of the right
and left propagating waves (although in the problems studied the left propagating waves can be
neglected).

Numerical solutions of Eq. (17) are illustrated in Fig. 2. The solution in the figure has been
compared with a WKB solution (E(x) ∼ exp(

∫ x
k(x′)dx′)/

√
k(x)), showing good agreement.

More specifically, the solution represents correctly both the amplitude and the phase of the
wave in an inhomogeneous domain. The wavelet spectrum, Ea,b in Fig. 2, illustrates how the
wavelet representation is localised near wavenumbers satisfying the dispersion relation at x = b.
The spectrum is calculated on the finite domain (0, 120), excluding the matched layers, causing
pollution (a numerical widening of the spectrum) in the wavelet-spectrum near the boundaries
b = 0 and b = 120. This illustrates the importance of the matched layers to provide a clean
transform.

While Eq. (13) provides an exact response, it is computationally more expensive than the
expanded formulation in Eq. (16). To understand the type of error generated by expanding the
dielectric response in Eq. (14), we have compared solutions with different order expansions. The
results are shown in Fig. 3. In figure a) and b), both the second and third terms in Eq. (16) are
neglected (thus approximating K(x, k) = K(x, σ/a)) and the solutions exhibit strong oscillations
and a non-negligable offset in both the frequency and amplitude. In figure c) and d), the first
order term in (k − σ/a) has been added (second term in Eq. (16)), which reduced both the
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Figure 3. Solutions of Eq. (17) represented in terms of the wave amplitude, |E(x)|, and the
wave vector, k(x) = ∂xIm[ln(E(x))]. Figure a) and b) are evaluated when neglecting terms of
order σ and σ2. Figure c) and d) are evaluated when neglecting terms of order σ. Figure c) and
d) are evaluated with all terms.

oscillations and the offset. Finally, in figures e) and f), all terms in Eq. (16) are kept, yielding
good agreement with WKB solution.

5. Discussion and conclusions
A novel iterative technique for solving the spatially dispersive wave equation, Eq. (5), has been
proposed. The technique has the potential of including spatial dispersive effects in a simple
manner. Using fixed-point Picard iterations, this equation tends to be unstable. However,
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solutions can be found using Anderson acceleration. For Picard-unstable problems a large
number of iterations is required to find a solution using Anderson acceleration; e.g. the solutions
presented in section 4 were found after about 100 iterations. Initial studies indicate that the
number of iterations depend mainly on the complexity of the solution, while the dependence on
the initial guess and the grid resolution is weak. The present method is rather slow, however,
there are several possibilities for optimization.

The numerical complexity of the wavelet representation can be simplified by expanding the
dielectric response function for wave numbers near the fundamental wave number of the Morlet
wavelet, σ/a. For dielectric responses of finite order in k, the expansion can be made to exactly
represent the operator. However, for response tensors with all-order FLR effect a truncated
expansion is of interest. We have shown that truncations neglecting second order may cause
an oscillation of the wave amplitude, while keeping only zeroth order terms may give rise to an
error in both the wave number and the amplitude of the solution. The higher order terms in this
expansion describe the spectral width of Morlet wavelet. The nature of these oscillations are
still being investigated, however, our conclusion is that the spectral width of the Morlet wavelet
has to be taken into account to obtain a converged solution.

The Morlet wavelet has several attractive features, such as differentiability, localisation in
space and wave number. However, the Morlet wavelet basis has redundancy in the representation
of continuous functions, such that there is more than one way to represent the same signal.
While it is still possible to generate an inverse transform, the wavelet representation tends to
be computationally inefficient. The wavelet representation redundancy can be reduced by smart
reduction of the grid parameters in wavelet space, i.e. {a, b}, when performing the inverse
transform.
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