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Abstract. We offer a metal model suitable for the description of fast electrophysical processes
in conductors under influence of powerful electronic and laser radiation of femto- and picosecond
duration, and also high-voltage electromagnetic pulses with picosecond front and duration less
than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral
liquid are in agreement with the equations received by other authors formerly. New wide-
range expressions for the electronic conduction in strong electromagnetic fields are obtained
and analyzed.

1. Introduction

Progress in generation of powerful laser pulses of femtosecond and picosecond duration [1], in
creation of experimental high-voltage techniques for generation of electromagnetic pulses (EMP)
and intensive electronic beams of picosecond duration [2], and also the results of experimental
research of influence on metals of femtosecond laser radiation [3,4] and the EMP with picosecond
front (see [5] where it is established that the radial electrical intensity Er on the boundary of a
metal wire 20 µm in diameter attains the value Er = 24 MV/cm) points to necessity of creation
of physical and mathematical models of metal for the description of intensive fast electrophysical
processes.

Heating of the conduction electrons takes place under influence of ultrashort intensive laser
or electronic radiation on the metal. If the conduction electrons have no time to transfer the
acquired energy to the lattice (for example, the time of electron–phonon energy exchange in
aluminium according to our estimates equals τε ∼ 10−12–10−10 s (see [6] and references in it)),
then their mean free path becomes considerably larger than the average interatomic distance.
The fast electrons excite non-equilibrium fluctuations of the lattice in a metal, i.e. generate
the non-equilibrium phonons as a result of violation of quasi-neutrality. The generation of non-
equilibrium phonons leads to effective increase in speed of the electron–phonon exchange of
energy and to deceleration of the fast electrons. Such situation is typical for the normal (not
superconducting) metals at low temperatures when equilibrium phonons degrees of freedom are
frozen i.e. when the number of phononsNp → 0, and the free-path length of conduction electrons
l(ε) → ∞ [7]. Therefore, it is necessary to use more complex models for the description of elastic
deformations in the metal at low temperatures, in which the dynamics of metal ions is described
by the equations of continuum mechanics, and the dynamics of conduction electrons is described
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by the kinetic equation [8, 9]. Intensive ultrashort electron beams excite the elastic strains in a
metal due to non-zero weight and non-zero electric charge of particles, and lead to destruction
of the metal even in the case of weak heating of electrons [10]. It is also necessary to mark that
the appearance of the collective quasi-particle excitations like Langmuir plasmons and the ion-
sound ones in classical plasma is one of the main mechanisms of absorption of laser radiation and
relaxation of intensive electron beams in plasma [11, 12] (in a metal, the Langmuir’s plasmons
are termed just as the plasmons, and the analog of the ion-sound plasmons are phonons [7]).

Thus, the simultaneous existence of slow dynamics of metal ions and fast dynamics of quasi-
particle excitations (phonons and conduction electrons) is specific for the interaction of ultrashort
pulses of laser and optical radiation, and requires the construction of mesoscopic (single and
multiple-speed) models. In these models, the slow movements (lattice deformation) should be
described within the framework of multi-liquid and multi-temperature continuum mechanics,
and the fast movements should be described by the kinetic equations that take into account the
kinetics of mutual transitions of electrons from discrete to continuous states. As a rule, the slow
and the fast movements are considered separately in the literature: one-liquid one-temperature
models for the slow movements, and kinetic models for the fast movements.

The common methods of constructing the macroscopic mathematical models of one-
temperature, one-liquid or single-speed continua, interacting with the gravitational and
electromagnetic fields, are considered in detail in [13]. The basic variational equation

δ

∫

V4

ΛdV4 + δW ∗ + δW = 0, (1)

where Λ is the Lagrangian density, which is equal to the total energy density, taken with the
minus sign; δW ∗ is the influx of energy to the four-volume which is denoted V4; δW is the
additional inflow of energy due to the power interactions at the surface Σ3 (the boundary of the
volume V4). The equation (1) is actually the energy equation for arbitrary virtual increments
of independent parameters of a continuum. General methods of creation of one-temperature
multi-speed continua macroscopic models are based on the approach offered by Landau for
obtaining of a double-speed hydrodynamic model of superfluid helium-II [14], and are considered
in the monograph [15]. In the work [8] the non-linear theory of elasticity of neutral metal is
constructed by means of Landau’s method at low temperatures when it is possible to neglect
the contribution of phonons to deformation of a crystal. Thus dynamics of the conduction
electrons is described in [8] by the kinetic equation. One of us has constructed in [16] the gauge-
invariant field model of the current-carrying plasma-like medium (neutral metal) with topological
defects (dislocations and disclinations) with the use of the methods developed in [8, 13]. In
this model the dynamics of conduction electrons and phonons is described in the terms of the
kinetic equations. However, the models described in the works [8, 16] are not applicable for
the description of fast electrophysical processes in a metal under influence of ultrashort pulses
of electromagnetic and electronic radiation, owing to the assumption of conducting medium
neutrality, and the neglecting of phonons contribution to the internal energy of the metal [8].
Also the models [8, 16] are not applicable for the description of high-voltage EMP with the
picosecond duration for which great values of electrical intensity are characteristic [5].

Therefore the purpose of present article is creation of mesoscopic two-fluid and two-
temperature models in which dynamics of the quasi-particle excitations (phonons and conduction
electrons) is described by the kinetic equations. In view of experimentally established fact [5]
the existence of electromagnetic fields with electric field intensity up to 24 MV/cm, in the case
of picosecond electromagnetic pulses impact on conductors, we have found as well and analyzed
the wide-range expression for the electrical conductivity of metal in a strong electromagnetic
field.
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2. Dynamic equations

In this paper, we will be restricted for simplicity to the case of an ideal (defect-free) non-
magnetic crystal. Moreover, when considering the kinetics of mutual transitions of electrons
from discrete to continuous state we shall similarly [17] neglect of the distinction of the weights
of ions with various electric charge z. I.e. we shall believe that a metal consist of two liquids:
the ionic liquid with the mean concentration of particles n =

∑Z
z=0 nz, the macroscopical

velocity v =
∑Z

z=0 nzvz/n and the mean charge z̄ =
∑Z

z=0 z nz/n, and the electronic one
with the mean concentration of particles ne = 〈fe〉 and velocity ve (where fe(p, r, t) and p are
the distribution function and the quasimomentum of conduction electrons, respectively; 〈. . .〉
designates averaging on the distribution function). The densities of the electric charge and
current are determined by formulas: ̺e = e(z̄n − ne) and j = e(z̄nv − neve). According to the
last ratio, ve can by expressed in v and j as ve = z̄nn−1

e (v − j(ez̄n)−1). Then the continuity
equations for the ionic and electronic components can be written as:

∂n

∂t
+∇(nv) = 0, (2)

∂ne

∂t
+∇(nev) = Γe +

1

e
∇ (j− e (z̄n− ne)v) . (3)

The equation for the mean charge follows from the continuity equation for the electric charge
in view of the equations (2) and (3):

∂z̄

∂t
+ v∇z̄ =

Γe

n
. (4)

In the equations (3), (4) Γe = δne/δt is the rate of the electron density change as a result
of transition from the localized state to the free (“ionization”) state and the return transition
(“recombination”). In the neutral metal z̄n = ne, ∇j = 0. Therefore in the case of the
neutral metal, the equations (3) and (4) are equivalent. In the co-moving frame of reference the
stationary equation (4) Γe = 0 is an analogue of the Saha equation for the dense plasma.

It is known [8] that a crystal lattice is characterized by the translation vectors aα (α = 1, 2, 3)
and the invariant metric tensors gαβ = aαaβ of the direct lattice and aα (α = 1, 2, 3) and

gαβ = aαaβ of the reciprocal lattice (aαa
β = δβα, aαia

α
k = δik, here and below the summation

over repeated indices is performed; also bc and [a, c] are the scalar and cross products of vectors
b and c). Physically infinitesimal, i.e. big in comparison with the period of the lattice, but
small in comparison with distance on which the lattice parameters change considerably, the
differential of the coordinates dr(t) looks like

dr = aαdN
α + vdt, (5)

where Nα(r, t) = aαdr−aαvdt are the integer coordinates of the lattice ions measured in terms
of the translation vectors aα being one-valued functions r only in absence of dislocations in a
lattice. From (5) it follows that aα = ∇Nα, v = −aα∂N

α/∂t = −aαṄ
α.

According to [8] dynamics of the translation vectors is determined by the equations:

ȧα = −(v∇)aα + (aα∇)v,

ȧαi = −(v∇)aαi − aαk
∂vk
∂xi

. (6)

The density of lattice ions ρℓ = MAn (M = 1.66 × 10−24 g is the atomic mass unit; A
is the atomic weight) is connected with the invariant metric tensor by well known relation
ρℓ = MAs/Vc = MAs/

√
g = MAs/

√

det gαβ , i.e. n = s(det gαβ)
−1/2 (s is the number of atoms
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in the lattice unit cell). The identity dg = −ggαβdg
αβ allows us to be convinced easily that the

ion density in this form satisfies to the continuity equation (2).
In quasiclassical approximation one-electron wave function for the conduction electrons is the

function of integer coordinates of ions [8, 18]:

Ψ(Nα, t) ∼ exp

(

i

~
S0 (N

α, t)

)

, (7)

where S0 (N
α, t) is the classical action. In a periodic motionless lattice the Hamilton function

(Hamiltonian) coincides with electron energy ε = ε
(

kα, g
αβ
)

and it is the periodic function of
the invariant quasimomentum kα with the period 2π~:

∂S0

∂t
= −εe

(

kα, g
αβ
)

,
∂S0

∂Nα
= kα. (8)

The action in a deformable crystal lattice is defined with the help of the Galilean
transformation of one-electron wave functions [19]

S = S0 +mvr− mv2t

2
, (9)

where m is the conduction electron mass. Its quasimomentum and the Hamiltonian both are
defined by differentiation (9) [8]:

p =
∂S

∂r

∣

∣

∣

t
= kα∇Nα +mv ⇒ kα = aα(p−mv), (10)

He(p, r, t) = −∂S

∂t

∣

∣

∣

r

= −kαṄ
α + εe +

mv2

2
= εe + pv − mv2

2
. (11)

In (11) εe = εe
(

aα (p−mv) , gαβ
)

is a periodic function of the invariant quasimomentum
with the period 2π~ in contradistinction to the Hamiltonian. The energy of a conduction electron
in a deformable lattice is defined by the Galilean transformation [8]:

ε̃e = εe + vp0 +
mv2

2
= εe +mv

∂εe
∂p

+
mv2

2
. (12)

Foregoing, the expressions for a conduction electron and the Hamiltonian allow us to write
the kinetic equation with excluded acyclic on invariant quasimomentum kα variables as [8]:

∂fe
∂t

+ (v∇) fe + aα∇fe
∂εe
∂kα

− ∂fe
∂kα

(

aα
∂εe
∂r

+ eaαE
′ +

e

c

∂εe
∂kβ

H′ [aα,aβ]

)

= Îfe, (13)

where Îfe is the integral operator of elastic and unelastic electron collisions;

H′ = H− mc

e
[∇,v], E′ = E+

1

c
[v,H′] +

m

e

(

∂v

∂t
+

∂

∂r

(

v2

2

))

.

The Hamiltonian for the phonon gas in deformable metal can be represented as the function
of the invariant phonon quasimomentum qα = aαp (α = 1, 2, 3):

Hp = εp

(

aαqα, g
αβ
)

+ qαa
αv = ~ω

(

aαqα, g
αβ
)

+ qαa
αv. (14)
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Taking into account (14) we can write the kinetic equation for phonon gas similar to the equation
(13) as:

∂fp
∂t

+ (v∇) fp + aα∇fp
∂εp
∂qα

− ∂fp
∂qα

aα
∂εp
∂r

= Îfp, (15)

where Îfp is the integral operator of the phonon collisions among themselves and with the
conduction electrons.

The mean value of the phonon gas energy is determined by the relation [20]:

〈εp〉 =
∑

β

∫

~ωβfp
d3p

(2π~)3
=

∫

~ωfpgp(ω)dω, (16)

where β is the number of a normal oscillation branch of the crystal lattice; gp(ω) is its phonon
spectrum determined by the structure of the crystal lattice and satisfies an integral condition:

∫

gp(ω)dω = 3Ns. (17)

In the expression (17) N is the general number of the lattice unit cells.
Let us determine the macroscopical momentums and the energies of the lattice (ionic

component) (P(ℓ) and W (ℓ)) and the conduction electrons (P(e) and W (e)) by the following
expressions:

P(ℓ) = MAnv, P(e) = m〈fe〉
(

v +
1

〈fe〉
〈∂εe
∂p

fe

〉

)

= m〈fe〉ve,

W (ℓ) =
MAnv2

2
+ εℓ

(

gαβ
)

+
〈

εpfp
〉

, W (e) =
〈

ε̃efe
〉

=
mv2

2
+mv

〈∂εe
∂p

fe

〉

+
〈

εefe
〉

, (18)

where εℓ
(

gαβ
)

is the elastic (“cold”) energy of the lattice.
Being based on the approaches advanced in [21, 22], the dynamic equations for a metal in

two-liquid approximation can be written as:

∂P(ℓ)

∂t
+∇Π(ℓ) = ez̄n

(

E+
1

c
[v,H]

)

+R, (19)

∂P(e)

∂t
+∇Π(e) = −ez̄n

(

E+
1

c
[v,H]

)

−R, (20)

∂W (ℓ)

∂t
+∇Q(ℓ) = ez̄n (Ev) +Q△T , (21)

∂W (e)

∂t
+∇Q(e) = −ez̄n (Ev) +R (ve − v)−Q△T +Qne −Qrad, (22)

where

R =
〈

pÎfe
〉

= mνep
〈

fe
〉

(ve − v) = mνep

〈

∂εe
∂p

fe

〉

= mνep
(

z̄n−
〈

fe
〉)

v − mνep
e

j (23)

is the change of the ionic component momentum as the result of interaction with the conduction
electrons; νep is the effective frequency of the conduction electrons dispersion on the density

fluctuations (generally it can depend on the electric field intensity); Π(ℓ), Π(e) Q(ℓ), Q(e)

are the densities of momentum and energy flows for ionic and electronic components, accordingly.
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The last four terms in the equation (22) take into account the change of the conduction electrons
energy as the result of their elastic and unelastic collisions:

〈

ε̃eÎfe
〉

= R (ve − v) −Q△T +Qne −Qrad =
mνep
〈

fe
〉

〈∂εe
∂p

fe

〉2
−
〈

εpÎfp
〉

+Qne −Qrad. (24)

In (24) the first term is the Joule energy source (it is clearly visible in the case of neutral

metal wherein
〈

fe
(

∂εe/∂p
)〉

= −j/e); Q∆T =
〈

εpÎfp
〉

= δ
〈

εeÎfe
〉

is the heat exchange between
electronic and ionic components (δ is the efficiency of electron–ion heat exchange); Qne is the
energy change as the result of interband transitions (ionization–recombination processes); Qrad

is the radiation energy losses as the result of the conductivity electrons deceleration.
Operating similarly to authors of the article [8] we shall obtain the expressions for densities

of momentum and energy flows:

Π
(ℓ)
ik = MAnvivk + σ

(ℓ)
ik , σ

(ℓ)
ik = 2

(

σ
(ℓ)
αβ +

〈

λ
(p)
αβfp

〉

)

aαi a
β
k − εℓδik, (25)

Π
(e)
ik = −T

(em)
ik +m

〈

fe
〉

vivk +m
(

z̄n−
〈

fe
〉)

(vivk − vkvi)−
m

e
(vijk + vkji) + σ

(e)
ik , (26)

σ
(e)
ik = 2

〈

λ
(e)
αβfe

〉

aαi a
β
k ,

Q(ℓ) = v
(

εℓ +
〈

εpfp
〉)

− v2

2
P(ℓ) + vΠ(ℓ) +

〈

εp
∂εp
∂q

fp

〉

, (27)

Q(e) = v
〈

εefe
〉

− v2

2
P(e) + v

(

Π(e) +T(em)
)

+
〈

εe
∂εe
∂p

fe

〉

, (28)

where σ
(ℓ)
αβ = ∂εℓ/∂g

αβ ; λ
(e)
αβ = ∂εe/∂g

αβ ; λ
(p)
αβ = ∂εp/∂g

αβ ; T
(em)
ik =

(

EiEk +HiHk + δik(E
2 +

H2)/2
)

/(4π) is the Maxwell tension tensor [23].
From two equations of dynamics (19)–(20) it is possible to proceed to another two equations,

one of which describes dynamics of the metal in the center-of-mass system for ions—conduction
electrons, and the second represents the generalized Ohm law where the electron inertia is taken
into account:

∂P(Σ)

∂t
+∇Π(Σ) = 0, (29)

∂j

∂t
=

e2z̄n

m

(

E+
1

c
[v,H]

)

− e

mc
[j,H] + e

(

z̄n− 〈fe〉
)

νepv + env

(

Γe

n
− v∇z̄

)

− e

m
∇Π(e) − νepj,

(30)

where P(Σ) = P(ℓ)+P(e), Π(Σ) = Π(ℓ)+Π(e). At development of the equation (30) we assumed
that m/(MA) ≪ 1. The second term in (30) takes into account the contribution to a current
density of the Hall effect, and the next-to-last is the thermoelectricity.

The equations (19)–(22) or (29), (30), (21), (22) with the defining ratios (18), (25)–(28) are
the main content of the two-fluid, two-temperature model of the metal offered by us for the
description of the fast electrophysical processes. For receiving those equations we did not do
any assumptions of the magnitude of the electromagnetic field, and about of the speed of its
change. It is obvious that macroscopic velocities of the electronic and ionic components of the
metal have to be essentially less than the light speed. Also the received equations should be
supplemented with the complete set of Maxwell’s equations [23, 24], and with the initial and
boundary conditions (different for each specific objective).

Expressions (25)–(28) show that to close the equations set (19)–(22) or (29)–(30) and (21)–
(22), it is necessary to solve the kinetic equations (13) and (15). That will be done in the
following section.
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3. The electronic conduction in high pulse electromagnetic fields

Let us consider the electron transport in metal plasma in a strong electromagnetic field. For this
purpose we shall take advantage of the kinetic equation for conduction electrons (13), written
down for of the conduction electron distribution function fe = f0 + δf = f0 + pf1/|p| in the
co-moving frame of reference in the diffusion approximation [25–27]:

∂f0
∂t

+
ve
3
∇f1 +

1

ne(εe)

(

ne(εe)

(

eve
3

(

Ef1
)

− 2mv2sεeve
l(εe)

(

f0
(

1− f0
)

T
+

∂f0
∂εe

)

))

= 0, (31)

∂f1
∂t

+ ve∇f0 + eveE
∂f0
∂εe

+
e

mc
[H, f1] +

ve
l(εe)

f1 = 0, (32)

where vs is the sound speed in the metal, determined by the structural part of pressure (without
taking into account the pressure of the electron thermal excitation); n(εe) = 4πp2∂p/∂εe =
4πm3/2(2εe)

1/2 is the density of electron states for a parabolic power spectrum εe = p2/(2m);
l(εe) is the length of the conduction electron free path. The equations (31) and (32) are
valid under the condition δ ≪ 1 (δ = mv2s/T is the value of transmitted energy from the
electrons to the lattice being true at T ≫ TD [28], where TD is the Debye temperature).
Since in the ideal gas (plasma) v2s ∼ T/(MA) then also in this case δ ∼ m/(MA) ≪ 1.
An additional condition of applicability of the equations (31) and (32) coordinated with the
smallness of δ is the smallness of ratio f1/f0. Its maximal value (f1/f0)max ∼ δ [27] is
achieved at |E| ∼ mv2s/

(

el(εe)
)

. The equations (31) and (32) are correct for any electrical field
strengths when these two conditions are satisfied. According to V Ginzburg [29] the nonlinearity
contribution to processes of electronic transport in electromagnetic fields becomes essential at

E ≫ Ep =
(

3mTe−2δ(ω2 + ν2ep0)
)1/2

> Ep0 = νep0
√
3mTδ/e (where ω, νep0 are the frequencies

of the field and of the electron–ion’s collisions at E = 0, respectively). For δ = mv2s/T [28]
Ep0 =

√
3mvsνep0/e. The estimates of Ep0 for aluminum and copper under normal conditions

are values: Ep0(Al) = 5.172 kV/cm, Ep0(Cu) = 3.842 kV/cm. The top estimation of a plasma
electric field value EpF = mvF νep0/e, at which degeneration of the electronic component of metal
vanishes, is the following: EpF(Cu) = 0.893 MV/cm, EpF(Al) = 1.149 MV/cm. Comparing these
estimates to the experimental estimation of the radial electric field strength from the work [5]
it is possible to state that electronic transfer will non-linearly depend on the electric intensity,
at least, in the surface layer of the metal subjected to influence of a picosecond high-voltage
electromagnetic pulse.

Taking into account the aforesaid we shall be limited for simplicity to the case of an
uncharged metal of cubic symmetry and homogeneous electromagnetic non-relativistic field with
characteristic frequencies ν ≪ νep0, when finding-out of influence of a strong electromagnetic
field on the electric conduction. In this case the temporal and spatial derivatives and also the
term containing H should be neglected. Then the system of the equations (31) and (32) will
become:

eve
3

(

Ef1
)

− 2mv2sεeve
l(εe)

(

f0
(

1− f0
)

T
+

∂f0
∂εe

)

= 0, (33)

eveE
∂f0
∂εe

+
ve

l(εe)
f1 = 0. (34)

Its solution looks like:

f0(εe) =

(

exp

(
∫ εe

µ

dǫ

T (ǫ)

)

+ 1

)−1

, f1(εe) = −el(εe)E
f0(1− f0)

T (εe)
, (35)
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where

T (εe) = T

(

1 +
e2l2(εe)E

2

6mv2sεe

)

= T

(

1 +
e2τ2(εe)E

2

3m2v2s

)

. (36)

Using well known definition of the electric current density for a cubic lattice, we shall receive
the general expression for the electric conduction:

σ(E2) =
(2m)1/2e2

3π2~3

∫

∞

0

ε
3/2
e τ(εe)f0(1− f0)dεe

T

(

1 + e2τ2(εe)E2

3m2v2
s

) (37)

=
e2z̄n

3m

∫

∞

0 ε
3/2
e τ(εe)f0(1− f0)

[

T

(

1 + e2τ2(εe)E2

3m2v2
s

)]−1

dεe

∫

∞

0 ε
1/2
e f0dεe

=
e2z̄nτep

m
. (38)

The mean time of the conduction electron dispersion follows from the equation (37):

τep(E
2) =

1

3

∫

∞

0 ε
3/2
e τ(εe)f0(1− f0)

[

T

(

1 + e2τ2(εe)E2

3m2v2
s

)]−1

dεe

∫

∞

0 ε
1/2
e f0dεe

. (39)

The equations (35)–(37) show that it is necessary to define the time of electron dispersion
τ(εe) for finding the electron distribution function and electric conductivity in explicit form.
In this work, we consider collective quasi-particle excitations in the condensed substance as
conduction electrons. As shown in the works [30–32] it is possible to consider the conduction
electrons as an ideal Fermi gas, i.e. to ignore the Fermi-liquid effects at calculation of the
electronic coefficients. In this case, for finding of the free path of conduction electrons we
can use analogy, between scattering of the x-ray radiation and conduction electrons on density
fluctuations. This analogy was first introduced and used by J I Frenkel [33] for the explanation
of temperature dependence of the specific resistance of metals. This analogy also is neither
more nor less than an essence of so-called diffraction model of a metal [34] and of the Ziman’s
formula [35, 36]. For the first time this analogy was used by one of us in 1975–1977 for finding
wide-range expression for the electrical conductivity within the plasma model of metals [37]
and was applied to the interpretation of experiments on the magnetic cumulation [38], and also
was used for modeling of the magnetohydrodynamic regime of the electrode evaporation in the
plasma focus [39]. Later, the wide-range expressions for the electronic transport coefficients were
offered by Lee and More [40] and by Bespalov and Polishchuk (a model offered by them was
described in detail in the collective monograph [41]). An essential difference of our approach
is that the static structure factor in a long-wave limit coincided with a known definition of
density fluctuations via the isothermal module of compressibility, i.e. it was coordinated with
an equation of state. It should be noted also that now-days the methods ab inition of numerical
calculation of the electronic transport and optical properties of the dense plasma, within the
theory of the linear response by means of quantum-mechanical Kubo–Greenwood’s formulas (see
for example [42–44]), which practically do not demand the preliminary use of an experiment,
are widely developed. Despite the reached results, this method is not applicable in the case
of intensive electromagnetic fields owing to absence of the theory of the nonlinear response.
Besides, that this method demands large computing expenses for obtaining the reliable results
as it is necessary to consider ensembles with large number of atoms. On the contrary, the kinetic
equations in principle are deprived of these problems and can be used for the solution of strongly
nonlinear problems (see for example [45]).
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Earlier the transport phenomena in high static and time-dependent electric fields were
intensively investigated for the semiconductors [46–48] and the fully ionized classical plasma
(see for example [49, 50]). The electrical conductivity of metals in strong electric fields at low
temperatures has been investigated by V Shabanskii [26, 51]. The negative result of our search
in the Internet has shown that up to now there are no researches of the electrical conductivity
and other transport coefficients dependence upon the electric-field strength in the wide range of
pressures and temperatures including the transition region from the metal state to the classical
plasma.

Therefore we shall take advantage of results of one of us [52,53] in which within the framework
of the plasma model the wide-range expression for time of the conduction electrons dispersion
on the density fluctuations having correct asymptotics for the metal and classical plasma is
determined as:

τ(εe) =
m1/2ε

3/2
e G

21/2πne4z̄2Λeff
, (40)

where G = κs/(nT ) = MAn (∂Ps/∂ρ) |T /(nT ) = MAv2s/T (for T → 0 G ∝ T−1, and for
T → ∞ G → 1) is a long-wave structure factor determining by density fluctuations. For
finding the expression (40) an effective potential was also used in which dispersion on ionic
skeleton electrons was taken into account. The Coulomb logarithm analogue included in (40) is
expressed by ratios:

Λeff = Λ1 − 2(Z − z̄)z̄−1Λ2 + ((Z − z̄)/z̄)2Λ3, (41)

where

Λ1(4k
2k−2

D ) =
1

2

(

ln

(

1 +
4k2

k2D

)

− 4k2k−2
D

1 + 4k2k−2
D

)

, (42)

Λ2 =
1

2
ln(1 + 4k2r2cd)

(

k2Dr
2
cd

k2Dr
2
cd − 1

ln
1 + 4k2k−2

D

1 + 4k2r2cd
− 1

k2Dr
2
cd − 1

)

,

Λ3 = Λ1(4k
2r2cd),

rcd = rc/(1 + kDrc); k
2
D = min{k2s , k2ei}, k2ei = k2De + (k4Di + k4s)k

−2
Di ; k

2
s = r−2

s =
(

3/(4πn)
)−2/3

;

k2Di = 4πe2z̄2n/T ; k2De = 2πe2z̄nT−1I−1/2(µ/T )/I1/2(µ/T ); Iν(y) =
∫

∞

0

(

exp(ξ − y) + 1
)−1

ξνdξ;
y = µ/T .

Then with the account of (40), the expression (36) for T (εe) will become:

T (εe)

T
= 1+

(MAvs)
2TE2

6mn2e6z̄4Λ2
eff

(εe
T

)3
= 1+Bξ3; B =

(MAvs)
2TE2

6mn2e6z̄4Λ2
eff

=
MAGT 2E2

6mn2e6z̄4Λ2
eff

; ξ =
εe
T
, (43)

where

f0(ξ) =

(

exp

(
∫ ξ

y

dχ

1 +Bχ3

)

+ 1

)−1

. (44)

With the account of (44) the normalization condition for the function f0, determining also the
dependence of the chemical potential µ from the intensity of electric field E becomes:

ne = z̄n =
(2mT )3/2

2π2~3

∫

∞

0

ξ1/2dξ

exp

(

∫ ξ
y

dχ
1+Bχ3

)

+ 1

. (45)
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Accordingly the final form of the expression (37) for the electric conduction in a strong
electromagnetic field becomes:

σ =
T 3/2G

3(2m)1/2z̄e2Λeff(〈εe〉)
J ′
3(y,B)

J1/2(y,B)
, Jν(y,B) =

∫

∞

0
ξνf0(ξ, y,B)dξ; J ′

ν(y,B) =
∂Jν(y,B)

∂y
.

(46)
In (46) the average electron energy 〈εe〉 is determined by the following relation:

〈εe〉 = T
J3/2(y,B)

J1/2(y,B)
. (47)

4. Discussion

Let us analyze the limiting cases of the equation set (19)–(22) or (29)-(30) and (21)–(22). In
a neutral metal the existence is probable of a two-temperature state when the conduction
electrons can have the temperature essentially more than the temperature of the lattice
(phonon gas) [28, 54]. Such states are observed under interaction of the intensive femto-
and picosecond laser radiation with metals. Also in a neutral metal the Maxwell tension
tensor of the full electromagnetic field is replaced by the Maxwell tension of the magnetic field

T
(m)
ik = (HiHk + δikH

2/2)/(4π) [24]. In the neutral monocrystal metal the phonon energy flow
can be neglected in comparison with energy flow of the conduction electrons. However in the
case of the polycrystal metal with the grain sizes smaller or equal 100 nm the phonon energy
flow inside of the grains cannot be neglected because the mean free path of electrons is equal or
more the grain size [55].

In one-liquid and one-temperature approximation the equation for total energy density will
become:

∂W (Σ)

∂t
+∇Q(Σ) =

mνep
e2z̄n

j2, (48)

where the total energy flow density in neglect of heat phonon transport becomes:

Q(Σ) = v
(

εℓ +
〈

εpfp
〉

+
〈

εefe
〉)

− v2

2
P(Σ) + v

(

Π(Σ) +T(m)
)

+
〈

εe
∂εe
∂p

fe

〉

. (49)

At low temperatures when phonon degrees of freedom are frozen the contribution of phonons
and the Joule heating to metal energy can be neglected in comparison with elastic energy of a
lattice. Then the right part of the equation (48) is equal to zero, and the expressions for Π(Σ)

and Q(Σ) are written in the form, completely in coincidence with corresponding expressions of
the nonlinear elasticity theory of metal advanced in [8]:

Π
(Σ)
ik = −T

(m)
ik + (MA+mz̄)nvivk −

m

e

(

vijk + vkji
)

+ 2
(

σ
(ℓ)
αβ +

〈

λ
(e)
αβfe

〉)

aαi a
β
k − εℓδik,

Q(Σ) = v
(

εℓ +
〈

εefe
〉)

− v2

2
P(Σ) + v

(

Π(Σ) +T(m)
)

+
〈

εe
∂εe
∂p

fe

〉

.

In the neutral metal, it is possible to neglect of the electron inertia. If we also neglect the
interband transitions, the generalized Ohm law (30) will become:

j =
e2z̄n

mνep

(

E+
1

c
[v,H]

)

− e

mcνep
[j,H]− e

mνep
∇Πe, (50)

where σ = e2z̄n/(mνep) is the electric conductivity. The second term in (50) takes into account
the contribution of the Hall effect to a current density, and last is the thermoelectricity. In weak
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magnetic fields the Hall effect can be neglected. If also the gradients of the electronic stresses are
small, the Ohm law (50) takes the elementary form known from magnetic hydrodynamics [24]:

j =
e2z̄n

mνep

(

E+
1

c
[v,H]

)

= σ

(

E+
1

c
[v,H]

)

. (51)

In the case of strong pulse electric field and weak magnetic field, the electric conductivity σ
included in the Ohm law (51) is determined by the formula (46). We shall discuss the behavior of
σ depending on E(t) value. In weak electric fields (|E| ≪ EpF) when it is possible to neglect the
dependence σ(E2), the expression (51) coincides with the formula for the electric conductivity
obtained in [52,53]:

σ =
T 3/2G

3(2m)1/2 z̄e2Λeff(〈εe〉)
I ′3(y)

I1/2(y)
, I ′ν(y) =

dIν(y)

dy
. (52)

In [52] it is shown that the expression (52) has correct asymptotics in the solid metal and
the classical ideal plasma, and also describes continuous transition from the condensed state of
metal to classical metal plasma. Besides, in [53] it is shown that the values of the electrical
conductivity of copper non-ideal plasma calculated with (52) in nonideality parameter range
of values 3 6 Γ 6 100 will be well coordinated with the results of experiments [56, 57] (see
also the report [58] in which these experiments are analyzed and a comparison with theoretical
results of other authors is carried out). Not carrying out detailed quantitative comparison of
the expressions (51) and (52) which will be a subject of a separate publication it is possible to
draw a conclusion that σ(E2) will be more or smaller than σ(E2 = 0) only after the vanish of
degeneration of the conduction electron gas of the metal (for |E| > EpF ∼ 1 MV/cm).

5. Conclusion

Thus in the presented work the physical and mathematical model of a metal for the description
of fast electrophysical processes taking place under the influence of strong pulse electromagnetic
fields was proposed and new wide-range expression for the metal electrical conductivity in a
strong electric field being valid both for the quantum plasma and classical one was obtained.
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