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Abstract. We propose a novel type of quasi-phasematching for the second harmonic 
generation in periodically-poled nonlinear crystals. In contrast to the conventional quasi-
phasematching where one (or few) quasi-wavevector(s) of periodical poling compensate for the 
momentum mismatch between a pair of the fundamental photons and the SHG one, with the 
proposed mechanism the momentum mismatch between several pairs of fundamental and SHG 
photons is compensated with one quasi-wavevector of periodical poling. 

1.  Introduction 
Generation of the second harmonic (SHG) of infrared (IR) light offers one of the most 
preferred ways for realization of compact visible laser sources with a number of cutting-edge 
applications in microscopy, spectroscopy, biophotonics and photomedicine. Availability of 
compact, efficient and cost-effective IR laser diodes in the near-IR range of 0.8 - 1.5 μm 
supports this trend both from the market and technical sides [1]. However, the efficient SHG 
is possible only with simultaneous photon energy Eλ=2E2λ and momentum conservation 
kλ=2k2λ (here and below the subscript 2λ denotes the fundamental and λ SHG wavelength). 
The last requirement of the photon momentum conservation (or “phase-matching”) is difficult 
to achieve due to dispersion of the refractive index in the nonlinear crystal. Without phase-
matching, the generated second harmonic grows and decays as the fundamental and SHG 
waves go in and out of phase over each coherence length Lc=½λ/|nλ–n2λ|, where nλ and n2λ are 
the refractive indexes at SHG and fundamental wavelength correspondingly [2]. 

Since its first introduction in 1960s [2,3], the preferred approach for the phase-matching 
between interacting harmonic and fundamental waves is the periodical poling (or “quasi-
phase-matching” - QPM) of the ferroelectric nonlinear crystals. This is normally achieved by 
periodically reversing the crystals polarization under large electric field. The proper phase 
relationship between the propagating waves is maintained with the poling period being double 
the coherence length Λ=2Lc. Under this condition, the SHG efficiency is maximized because 
of momentum conservation by the quasi-wave-vector of the periodical poling 
kΛ=2π/Λ=k=kλ–2k2λ as shown schematically in figures 1(a) and (b). Tuning of the 
conversion wavelength is possible by introduction of multiple gratings or variable poling 
period [4], Fibonacci or Fourier-constructed quasi-periodical poling [5,6], shifting dispersion 
in the nonlinear crystal with temperature [7] or by introduction of the multimode waveguide 
[8,9]. 
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Figure 1 Schematic of periodical poling and momentum conservation for the first-order 
poling (a,b), high-order poling (c,d) and fractional-order poling (e,f) correspondingly. Note 
the reduction of the coherence length Lc for the fractional-order poling (e). 
 

As shown by Fejer at al. [10], it is also possible to achieve QPM in the case of the high-
order periodical poling that dramatically extends the spectral tuning range of SHG. With the 
high-order poling, the period is a multiple of the doubled coherence length Λ=m.2Lc, where 
the natural number m=2, 3, 4… is the order of poling. With the mth order poling, in contrast to 
the first-order poling, it is necessary to ‘utilize’ not one, but m quasi-wave-vectors of the 
periodical poling for compensation of the momentum mismatch m.kΛ=k=kλ–2k2λ as shown 
schematically in figures 1(c) and (d). Generally speaking, this process is very similar to the 
high-order diffraction with the conventional diffraction grating. 

2.  Fractional-order periodical poling for the second harmonic generation 
In this paper, we propose a fractional order of poling period of nonlinear crystal. In contrast to 
the higher-order poling with m quasi-wave-vectors of the periodical poling compensating the 
momentum mismatch between a pair of fundamental photons and SHG one, fractional order 
poling enables momentum compensation for p pairs of fundamental and p SHG photons with 
one quasi-wave-vector of the periodical poling: kΛ=k=p.(kλ–2k2λ). The effective coherence 
length in this case of the multi-photon momentum compensation reduces p-fold Lc=π/k 
leading to the corresponding decrease of the fractional-order poling period 
Λ=2π/k=2π/p.(kλ–2k2λ)

-1 being a ‘fraction’ of the first-order one. Also, it is possible to 
generalize this approach by merging both the high- and the fractional-order poling: 
m.kΛ=k=p.(kλ–2k2λ). In other words, momentum mismatch between p pairs of the 
fundamental and p SHG photons can be compensated with m quasi-wave-vectors of the m/p-
order periodical poling as shown schematically in figures 1(e) and (f). 

Now, it is important to understand the law for the spatial evolution of the SHG intensity 
with the fractional-order poling. With the conventional and higher-order poling, the rate of 
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growth of the slowly varying SHG field amplitude in the one-dimensional periodically-poled 
nonlinear crystal is proportional to the square of the amplitude of the fundamental wave, 
spatially-modulated nonlinear coefficient and the phase term [10]: 

 22
1 ( ) exp( )

dE
E d z i kz

dz
   (1) 

 

a) b)
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Figure 2 Spatial evolution of the SHG field amplitude and intensity for the first-order poling 
(a,b), third-order poling (c,d) and half-order poling (e,f). 
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This simple expression is valid under assumption of low conversion efficiency, loose focusing 
and absence of losses at fundamental and SHG wavelengths. Integration of (1) yields the 
spatial evolution of the SHG field amplitude:  

 2
2 1

0

( ) ( ) exp( )
z

E z E d x i kx dx   (2) 

where x is the integration variable and z is the coordinate along the direction of propagation of 
the fundamental and SHG waves in the periodically-poled nonlinear crystal. In the case of an 
‘ideal’ first-order poling, with the period of poling corresponding to the momentum mismatch 
Λ=2π/k=2π/(kλ–2k2λ) and the module of material nonlinearity always having the maximal 
value d(z)=±deff (corresponding to the meander-like modulation with negligibly thin inverted 
domain interfaces) integration of (2) yields the classical spatial evolution of the SHG field 
amplitude represented in figure 2(a). Figure 2(b) shows the spatial evolution of the SHG 
intensity being a square of the module of the field amplitude. 

Taking the third-order poling as an example of the higher-order poling, one should increase 
the period of poling 3-fold: Λ=6π/k and keep the momentum mismatch value k=kλ–2k2λ. 
With meander-like modulation and thin domain interfaces, integration of (2) and its square 
provides one with the spatial evolution of the SHG field amplitude and intensity as shown in 
figures 2(c) and (d). Comparing figures 2(a,b) and 2(c,d) correspondingly it is easy to note 
significant decrease of the conversion efficiency with the third-order poling due to 
uncompensated oscillations of the SHG field in the first two thirds of each half-period of 
poling. 

In contrast to a higher-order poling, a fractional poling period becomes a ‘fraction’ of the 
first-order one Λ=6π/k not due to ‘artificial’ denomination by the fraction value p but 
because of increase of the effective momentum mismatch k=p.(kλ–2k2λ) which in turn is due 
to compensation of momentum mismatch between p pairs of fundamental and p SHG photons 
with one quasi-wave-vector of the periodical poling as stated in the first paragraph of this 
section. Figures 2(e) and (f) show the spatial evolution of the SHG field amplitude and 
intensity for the simplest case of the ½ period poling, with periodically-poled grating quasi-
wave-vector compensating for the momentum mismatch of two pairs of fundamental and two 
SHG photons. One can note striking similarity between the figures 2(e,f) and 2(a,b) which 
differ only with the period of ‘ripples’ caused by the SHG and fundamental waves coming in 
and out of phase. This should be attributed to an ‘ideal’ compensation of the multi-photon 
momentum mismatch with the shortened period of poling. 

3.  Conclusion 
In summary, we have discussed a novel mechanism of quasi-phasematching for the second 
harmonic generation in periodically-poled nonlinear crystals. The proposed mechanism is 
based on compensation of the momentum mismatch between several pairs of fundamental and 
SHG photons with one quasi-wavevector of periodical poling. This is the ‘opposite’ to the 
conventional quasi-phasematching where momentum mismatch between two fundamental and 
one SHG photon is compensated with the one (or few) quasi-wavevector(s) of periodical 
poling. 
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