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Abstract. The present work concerns multipoint description of turbulence in terms of the
probability density functions (pdf’s) and the characteristic Hopf functional. Lie symmetries of
infinite systems of equations for the pdf’s and the Hopf functional equation are discussed. Based
on symmetries, invariant solutions for turbulence statistics are calculated.

1. Introduction
With respect to turbulence research three complete statistical descriptions of turbulence, treated
as a stochastic field, are known, namely the infnite hierarchy of the multi-point correlation
equations (so-called Friedmann-Keller (FK) hierarchy), the infnite hierarchy of the multipoint
probability density functions (pdf’s) equations (Lundgren-Monin-Novikov (LMN) equations, [1])
and finally the Hopf functional approach [2]. The two latter approaches will be discussed below.

The n-point velocity pdf fn(x(1),v(1),x(2),v(2), . . . ,x(n),v(n), t) contains information about
all statistics up to n-point statistics of infinite order which can be calculated from the pdf by
integration over the sample space variables, for example

〈Ui(1)(x(1), t)Ui(2)(x(2), t) · · · · · Ui(n)
(x(n), t)〉 =

∫
vi(1)vi(2) · · · · · vi(n)

fndv(1) . . . dv(n).

The infinite hierarchy of equations for multipoint pdf’s was derived in [1]. E. Hopf introduced
another very general approach to the description of turbulence. He considered the case where
the number of points in pdf goes to infinity, so that the probability density function becomes
a probability density functional and one deals with a continuous set of sample space variables
v(x). It is more convenient to consider a functional Fourier transform of the probability density
functional called the characteristic functional Φ([v(x)], t). The approach of Hopf was later
generalised in Ref. [3] where the full space-time functional formalism was introduced and the
functional Φ([v(x, t)]) was defined as

Φ([v(x, t)]) =

〈
exp

(
i

∫∫
U(x, t) · y(x, t)dtdx

)〉
(1)
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where y(x, t) is an arbitrary vector field which vanishes at spatial infinity. With this definition
moments of velocity can be calculated as the functional derivatives of Φ at the origin [3]

δnΦ

δyi(1)(x(1), t1) · · · δyi(n)(x(n), tn)

∣∣∣
y=0

= in〈Ui(1)(x(1), t1)Ui(2)(x(2), t2) · · · · · Ui(n)
(x(n), tn)〉 (2)

where the functional derivative δ/δyi(x) can be understood as a generalisation of a gradient, for
the case of infinitely many variables, e.g. we have

∂

∂si

∞∑
j=−∞

fjsj =

∞∑
j=−∞

fjδij = fi

and, for the functional derivative

δ

δs(x)

∫
f(x′)s(x′)dx′ =

∫
f(x′)δ(x′ − x)dx′ = f(x).

Evolution equation for the characteristic functional was derived in Ref. [3]. It is only one
equation (not a hierarchy) which embodies the statistical properties of the fluid flow in a very
concise form.

The objectives of the present work are to discuss the classical and new statistical Lie
symmetries that were first found for the FK hierarchy [4] and are also present in the LMN
hierarchy [5] and the Hopf equation. Based on symmetries, invariant solutions of the considered
systems can be derived [6]. Such solutions and their realizability will be addressed within the
present work. In particular, a possible route to derive invariant solutions for the characteristic
functional of turbulence will be outlined.

The Lie symmetry transformation is such transformation of the independent and dependent
variables, which does not change the functional form of a considered equation [6],
F (x,y(x),y

1
(x),y

2
(x), . . . ) = 0, where y

1
(x) denotes any first-order derivative of y, y

2
(x) any

second-order derivative etc. The transformed variables

x∗ = g(y(x), ε), y∗ = h(x,y(x), ε)

are functions of x, y and a group parameter ε. The functional form of a considered equation
does not change when written in the new variables, i.e. we have

F (x∗,y∗,y∗
1
,y∗

2
, . . . ) = 0.

The transformations can also be written in infinitesimal forms after the Taylor series expansion
about ε:

x∗ = x+ ξ(x,y)ε+O(ε2), y∗ = y + η(x,y)ε+O(ε2). (3)

It follows from the Lie first theorem that knowing the infinitesimal forms ξ and η uniquely
determines the global form of the group transformation x∗ and y∗. With the use of infinitesimals
invariant solutions of the considered equation may be derived [6]. In fluid mechanics these
solutions often represent attractors of the instantaneous fluctuating solutions of the Navier-
Stokes equations, i.e. the scaling laws for turbulence statistics. From the Lie symmetry analysis
of the LMN hierarchy it followed that the new symmetries are connected with intermittent
laminar/turbulent flows [5]. The outcome of the symmetry analysis are the invariant solutions
for turbulence statistics and new possibilities to improve turbulence closures, such that invariance
under the whole set of symmetries is accounted for.
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2. Symmetries of the LMN hierarchy
Symmetries of the LMN hierarchy were investigated in Ref. [5]. Therein, it was shown that
the hierarchy is invariant under the classical symmetries of the Navier-Stokes, equations, in
particular, time and space translations t∗ = t+ at and x∗i = xi +ax, Galilean invariance t∗ = t,
x∗i = xi + v0 t, v

∗
i = vi + v0 and, for non-zero viscosity, one scaling group

t∗ = e2a2t, x(l) = ea2x(l), v
∗
(l) = e−a2v(l) f

∗
n = e−3na2fn, f

∗
n+1 = e−3(n+1)a2fn+1. (4)

Moreover, it was shown in [5] that two additional symmetries of the LMN hierarchy exist which
transform a pdf of a turbulent signal into the pdf of an intermittent laminar-turbulent flow.
These symmetries are equivalent to the additional symmetries derived first for the multipoint
velocity correlations in [4]. Written for the the one-point pdf these symmetries are

f∗1 (v;x, t) = δ(v) + eas(fn − δ(v)) (5)

and

f∗1 (v;x, t) = f1(v;x, t) + ψ(v), where

∫
ψ(v)dv = 0. (6)

The transformation (5) forms a semigroup, as the parameter as is not arbitrary but is restricted
to as ≥ 0.

With the use of new symmetries series of invariant solutions for turbulence statistics can be
derived from the characteristic equation [4]. A turbulent/laminar solution for the mean velocity
in the plane Poiseuille channel flow was derived in [5]. For this purpose it was necessary to use
the classical scaling symmetry (4), the new statistical scaling (5) and translation (6) written for
a channel flow (in a modified form due to the presence of boundaries). For the mean velocity
these transformations have the following form

x∗2 = ek2x2, 〈U〉∗ = eas−k2〈U〉+ C1(1− x22/H2)

where x2 is the wall-normal coordinate, or, in the infinitesimal forms (3)

ξx2 = k2x2, η〈U〉 = (as − k2)〈U〉+ C1(1− x22/H2). (7)

Invariant solution for velocity can be found from the solution of the characteristic equation
[5]

d〈U〉
η〈U〉

=
dx2
ξx2

, ⇒ d〈U〉
(as − k2)〈U〉+ C1(1− x22/H2)

=
dx2
k2x2

. (8)

The system for as = k2 has the following solution

〈U〉 =
C1

k2
ln(x2) +

C1

2k2

(
1− x22

H2

)
+ C (9)

where, C1, k2 and C are constants and as = k2 ≥ 0. This solution is a sum of the turbulent
(logarithmic) and laminar velocity profiles and follows from a mathematical analysis of the
governing equations. In particular, the logarithmic solution for the turbulent part is obtained
without the use of the mixing-length assumption and without specification of the mixing-length.

Within the present work the realizability of the solution (9) will be confirmed. Let us consider
a flow in a channel with Re close to its critical value where the laminar-turbulent transition takes
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place. In the channel both laminar and turbulent flow is possible with a certain probability. A
realisable solution of an intermittent laminar-turbulent flow is given by

〈U〉 = γuτ
1

κ
ln(x2) + (1− γ)UL

(
1− x22

H2

)
+ C′ (10)

where where uτ is the friction velocity and H- the channel half-width, κ is the von Karman
constant, UL is the centerline velocity of a laminar profile in a channel and γ is the intermittency
factor. The value γ = 1 corresponds to a fully turbulent and γ = 0 to a fully laminar profile,
hence for (10) to be realizable, γ must be contained within the bounds 0 ≤ γ ≤ 1.

From the comparison between (9) and (10) it follows that

C1

k2
= γuτ

1

κ
,
C1

2k2
= (1− γ)UL. (11)

The following relations between the driving pressure gradient ∇〈P 〉 and uτ and UL result from
the averaged Navier-Stokes equations for the laminar and turbulent flow, respectively

UL = − 1

2νρ
∇〈P 〉H2, uτ =

√
−H
ρ
∇〈P 〉. (12)

We can also define the Reynolds number, based on the pressure gradient as Re =√
−H∇〈P 〉/ρH/ν. When the flow is turbulent this corresponds to Re = Reτ = uτH/ν. It

then follows from (12) that uτ/UL = 2/Re. Comparing (11) with (12) we obtain

γ =
κRe

1 + κRe
=

1

1 + (κRe)−1
. (13)

Such value of γ is, correctly, contained within the bounds 0 ≤ γ ≤ 1, independently of the value
of Re, moreover it is a monotonic function which increases with Re. Hence, the realizability of
the solution (9) which follows from the Lie group analysis can be confirmed. It is difficult to
comment on a possible predictive property of (13) (in terms of the dependence of γ on Re) as the
laminar-turbulent transition depends on various factors (e.g. the level of external disturbances)
which are not included in the analysis. Still, it is interesting that Eq. (13) could be obtained
as a result which follows from the Lie-group invariant solution (9). For Re = 150 where low-Re
turbulent flows are observed Eq. (13) predicts γ ≈ 0.98, which is a reasonable result. However,
for very low Re, γ obtained from Eq. (13) is overpredicted. Possibly, Eq. (13) could be valid
within a certain range of Re.

3. Symmetries of the Hopf equation
In this section, symmetries of the Hopf functional formulation for turbulence will be discussed.
The evolution of the space-time functional, as defined in Eq. (1) is governed by the following
equation [3]∫∫

ηk(x, t)

[
∂

∂t

δΦ

δyk(x, t)
− i ∂

∂xl

δ2Φ

δyk(x, t)δyl(x, t)
− ν ∂2

∂xl∂xl

δΦ

δyk(x, t)
+
∂Π

∂xk

]
dtdx = 0, (14)

where Π is the pressure functional and ηk(x, t) is a testing field. If ηk satisfies the condition
∂ηk/∂xk = 0, then, the pressure functional term can be eliminated by integrating (14) by parts
with

∫
∂ηk/∂xkΠdx = 0. The continuity condition for the incompressible flow in the functional

formulation reads
∂

∂xk

δΦ

δyk(x, t)
= 0. (15)
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Moreover, Φ must satisfy the relations

Φ(0) = 1, Φ([y]) = Φ([−y]), |Φ| ≤ 1, (16)

where · denotes the complex conjugate.
The Hopf functional equation (14) is invariant under the following transformation of variables

Φ∗ = Φ, x∗ = ek2x, t∗ = e2k2t, y∗i dx
∗dt∗ = ek2yidxdt, y∗ = e−4k2y, (17)

where we note that the functional derivative δ/δyk(x, t) is sometimes denoted by
∂/(∂yk(x, t)dxdt) which indicates that its dimension is 1/([y][L][T ]). Hence,

δ

δy∗k(x, t)
= e−k2

δ

δyk(x, t)
.

The Galilean invariance reads t∗ = t, x∗ = x+U0t and U∗ = U+U0. With this, the functional
Φ transforms as follows

Φ∗ =
〈

ei
∫∫
U ∗

(x,t)·y∗(x,t)dx∗dt∗
〉

=
〈

ei
∫∫
U (x,t)·y(x,t)dxdt

〉
ei

∫
y(x,t)·U 0dxdt = ΦC([y(x, t)],

(18)
where the functional C([y(x, t)]) = exp(i

∫∫
y(x, t) · U0dxdt) satisfies the condition C(0) = 1,

hence, also Φ∗(0) = 1 as required in Eq. (16).
The n-th derivative of the transformed functional Φ∗ at y = 0 gives

δnΦ∗

δyi(0)(x, t) · · · δyi(n−1)
(x, t)

∣∣∣
y=0

= in(Ui(0)(x, t) + U0i(0)) · · · (Ui(n−1)
(x, t) + U0i(n−1)

) (19)

as expected for the Galilean invariance. In the Galilean transformation, the space derivatives
in equation (14) transform as ∂/∂x∗i = ∂/∂xi and the integral over time and space

∫
dx∗dt∗ =∫

dxdt. As the variables y∗ = y, also the functional derivative remains unchanged δ/δ(yi(x))∗ =
δ/δyi(x). The derivative ∂/∂t can be presented as

∂

∂t
=
∂t∗

∂t

∂

∂t∗
+
∂x∗i
∂t

∂

∂x∗i
=

∂

∂t∗
+ U0k

∂

∂xk
. (20)

The transformed functional equation (14) reads∫∫
ηk(x, t)

[
∂

∂t∗
δC([y(x, t)])Φ

δyk(x, t)
− i ∂

∂xl

δ2C([y(x, t)])Φ

δyk(x, t)δyl(x, t)
− ν ∂2

∂xl∂xl

δC([y(x, t)])Φ

δyk(x, t)

]
dtdx = 0.

(21)
With (20) the first term in bracket in (21) is

∂

∂t∗
δCΦ

δyk(x, t)
=

(
∂

∂t
− U0l

∂

∂xl

)(
C

δΦ

δyk(x, t)
+ Φ

δC

δyk(x, t)

)
= C

(
∂

∂t
− U0l

∂

∂xl

)
δΦ

δyk(x, t)
(22)

where the second equality follows from the fact that δC/δyk = iU0kC does not depend explicitly
on x or t.

The functional derivative of Φ∗ in (21) reads CδΦ/δyk(x) + ΦδC/δyk, and we note that
Laplacian ∇2

x of the second term is zero as this term is not a function of x. Hence, the last
RHS term of equation (21) inside the integral is Cν∇2

xδΦ/δyk. Further, the second functional
derivative of Φ∗ reads

C
δ2Φ

δyk(x, t)δyl(x, t)
+

δΦ

δyk(x, t)

δC

δyl(x, t)
+

δΦ

δyl(x, t)

δC

δyk(x, t)
+ Φ

δ2C

δyk(x, t)δyl(x, t)
. (23)
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Again, the derivative ∂/∂xl of the last term is zero, as it does not depend on x. In addition we
also have

∂

∂xl

[
δΦ

δyl(x, t)

δC

δyk(x, t)

]
=

δC

δyk(x, t)

∂

∂xl

δΦ

δyl(x, t)
= 0, (24)

where the first equality follows from the fact that the derivative of C does not depend explicitly
on x and the second from the continuity condition (15).

The second term in Eq.. (23), introduced into Eq. (21), leads to

− δC

δyl(x)

[
i
∂

∂xl

δΦ

δyk(x, t)

]
= U0lC

[
∂

∂xl

δΦ

δyk(x, t)

]
, (25)

which cancels with the last term in (22). This finally proves the Galilean invariance of Eq. (14).
An analogue of the new statistical scaling and translation symmetries (found for the

multipoint correlations in [4] and discussed in [5] for pdf’s, see also Eqs. (5,6)) can also be
derived for the Hopf functional. Mathematically, they follow from the linearity of the considered
functional equation (14) and the normalisation condition (16), and have the folowing form [7]

Φ∗ = 1 + eks (Φ− 1) and Φ∗ = Φ + Ψ([y(x)]), (26)

where Ψ is a functional which satisfies Eq. (14) such that Ψ(0) = 0. Substituting (26) into (14)
the invariance of (14) under these transformations is easily confirmed.

With the classical scaling (17) and the new symmetries (26) we can attempt to derive invariant
solutions for the space-time Hopf functional. For this purpose we can use a procedure analogous
to the one used in [8, 9]. We first present the functional in a form of Taylor-series expansion [2]

Φ = 1 + C1 + C2 + · · · (27)

where

Cn =

∫
Ki(1)...i(n)

(x(1), . . . ,x(n), t1, . . . , tn)yi(1)(x(1), t1) · · · yi(n)
(x(n), tn)dx(1) · · · dx(n)dt1 · · · dtn

(28)
with functions Ki(1)...i(n)

(x(1), . . . ,x(n), t1, . . . , tn) = in/n!〈Ui(1)(x(1), t1) · · ·Ui(n)
(x(n), tn)〉 which

are related to the multipoint, multitime moments of velocity. The three symmetries, (17) and
the new symmetries (26), written in the infinitesimal forms lead to the following characteristic
system of equations

dt

2k2t
=

dxi
k2xi

=
d(yidxdt)

k2(yidxdt)
=

dΦ

as(Φ− 1) + Ψ
, i = 1, 2, 3, (29)

which should hold for each point x and each time t.
The purpose of the present study is to outline a procedure of deriving invariant solutions

for the characteristic functional. Hence, one particular invariant solution will be derived, and
discussed although it seems that many more possibilities exist. We will consider two different
points x(1) and x(2) and two different times t1 and t2, and note that the characteristic system
(29) can also be rewritten as

dt1
ds

= 2k2t1,
dt2
ds

= 2k2t2,
dx(1)i

ds
= k2x(1)i, i = 1, 2, 3,

dΦ

ds
= as(Φ− 1) + Ψ (30)

d(yi(x(1), t1)dx(1)dt1)

ds
= k2yi(x(1), t1)dx(1)dt1,

d(yi(x(2), t1)dx(2)dt2)

ds
= k2yi(x(2), t2)dx(2)dt2.
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With further, mathematical transformations Eqs. (30) can be reformulated e.g. to the
following form

dt1
2k2t1

=
dt2

2k2t2
=

d(t1 − t2)
2k2(t1 − t2)

=
d(x(1)i − x(2)i)
k2(x(1)i − x(2)i)

=
d(yj(x(1), t1)dx(1)dt1)

k2(yj(x(1), t1)dx(1)dt1)
= (31)

=
d(yk(x(1), t1)yl(x(2), t2)dx(1)dt1dx(2)dt2)

2k2(yk(x(1), t1)yl(x(2), t2)dx(1)dt1dx(2)dt2)
= · · · = dΦ

as(Φ− 1) + Ψ
, i, j, k, l = 1, 2, 3

The first five integration constants, obtained from (31) are

a1 =
t1
t2
, a2 =

t1 − t2
t1

, a3 =
(x(1)1 − x(2)1)2

t1 − t2
, a4 =

(x(1)2 − x(2)2)2

t1 − t2
, a5 =

(x(1)3 − x(2)3)2

t1 − t2
.

A solution, which follows from the comparison of the first and the sixth term in (31) is

A6(x(1),x(2), t1, t2) =
1

t1
Fij(a1, a2, a3, a4, a5)yi(x(1), t1)yj(x(2), t2)dx(1)dt1dx(2)dt2, (32)

for each x(1),x(2),t1,t2. Integrating (32) we obtain another constant

C2 =

∫∫
1

t1
Fij(a1, a2, a3, a4, a5)yi(x(1), t1)yj(x(2), t2)dx(1)dt1dx(2)dt2. (33)

We next consider the last term in (31) and assume as = 0 and Ψ = 0. We will present the
solution Φ as a sum of constants Φ = 1 +C1 +C2 + . . . , as in the Taylor-series expansion (27).
For the homogeneous isotropic turbulence with zero mean velocity we have C1 = 0, the constant
C2 is given in Eq. (33) and it could also be possible to derive other constants, i.e. C3, C4 by an
analogous procedure, considering larger number of points x(1), x(2), x(3), x(4) etc. and larger
number of times.

The second functional derivative of Φ at the origin can provide a relation for the decay law
of the second-order turbulence statistics

δ2Φ

δyi(x(1), t1)δyj(x(2), t2)

∣∣∣
y=0

= i2〈Ui(x(1), t1)Uj(x(2), t2)〉 =
1

t1
Fij(a1, a2, a3, a4, a5). (34)

For example, if Fij = const for a possible choice x(1) = x(2) and t1 = t2, we obtain from (34)
the power-law decay of the kinetic energy in the homogeneous, isotropic turbulence

〈Ui(x(1), t1)Ui(x(1), t1)〉 ∼
1

t1
.

In the literature, the decay of kinetic energy k ∼ t−m is reported [10]. Although there is a
discussion on the value of m, several studies suggest that m approaches the value 1 as the initial
Re number increases [11].

4. Conclusions
The present work concerns the Lie symmetry analysis of infinite systems describing the statistics
of turbulence, the LMN hierarchy for pdf’s and the Hopf functional equation. First, the
symmetries of the LMN hierarchy, as derived in [5] were addressed, together with an invariant
solution for the mean velocity in a laminar-turbulent channel flow. The new contribution
of the present work is a discussion of the realizability of this solution. It was shown that
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the intermittency factor, following from the solution is correctly contained within the bounds
0 ≤ γ ≤ 1.

Next, the Hopf functional in the spatio-temporal formulation introduced in Ref. [3] was
discussed. It was shown that the evolution equation for the functional is invariant under
the transformations which follow from the Navier-Stokes equations, in particular, the Galilean
invariance was shown. Next, a possible procedure to derive invariant solutions for the Hopf
functional was proposed, which is another new contribution of the present work. Studying other
invariant solutions and their physical consequences is a perspective for a further study.

Another interesting issue is connected with the numerical study of the multipoint equations.
A numerical approach for the multipoint pdf’s has recently been devised in [12]. A new method of
numerical approximation of nonlinear functionals and functional differential equations has been
put forward in [13]. Both novel numerical approaches provide a new perspective for further,
numerical study of the multipoint approaches to turbulence.
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