This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Brought to you by:
Paper The following article is Open access

Investigations into the Interaction of a Wind Turbine with Atmospheric Turbulence in Complex Terrain

, , and

Published under licence by IOP Publishing Ltd
, , Citation C Schulz et al 2016 J. Phys.: Conf. Ser. 753 032016 DOI 10.1088/1742-6596/753/3/032016

1742-6596/753/3/032016

Abstract

This paper deals with the Delayed-Detached-Eddy-Simulations (DES) of a generic 2.4 MW wind turbine in a complex terrain site facing a turbulent atmospheric boundary layer. The boundary layer is generated based on measurement data derived at the complex terrain site. Further, the process of data preparation as well as the numerical setup are described. In the results the impact of complex terrain on the flow field is shown and estimations on the influence on the turbine performance are made. Afterwards, simulations of the turbine facing atmospheric inflow in flat and complex terrain are presented. An increase of loads resulting from a speed-up caused by the terrain as well as a clear change in the power spectrum of the turbine become visible in complex terrain compared to flat terrain. This finding is in agreement with the estimations derived previously. Moreover, the impact of inclined inflow caused by the local terrain slope can be seen in the load distribution vs. the azimuth angle, amongst others.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/753/3/032016