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Abstract. The classical blade-element/momentum (BE/M) method, which is used together 
with different types of corrections (e.g. the Prandtl or Glauert tip correction), is today the most 
basic tool in the design of wind turbine rotors. However, there are other classical techniques 
based on a combination of the blade-element approach and lifting-line (BE/LL) methods, 
which are less used by the wind turbine community. The BE/LL method involves different 
interpretations for rotors with finite or infinite numbers of blades and different assumptions 
with respect to the optimum circulation distribution. In the present study we compare the 
performance and the resulting design of the BE/M method by Glauert [1] and the BE/LL 
method by Betz [2] for finite as well as for infinite-bladed rotors, corrected for finiteness 
through the tip correction.  
In the first part of the paper, expressions are given for the optimum design, including blade 
plan forms and local pitch distributions. The comparison shows that the resulting geometry of 
the rotor depends on the method used, but that the differences mainly exist in the inner part of 
the blade and at relatively small tip speed ratios (TSR<5). An important conclusion is that an 
infinite-bladed approach combined with a tip correction results in a geometry which is nearly 
identical to a geometry generated from a finite-bladed approach.  
Next, the results from an experimental investigation on the influence on rotor performances of 
the tip correction on two different rotors are presented. Employing BE/M without the tip 
correction (“Glauert rotor”) and BE/LL with the Goldstein’s circulation (“Betz rotor”) two 
different 3-bladed rotors were designed and manufactured. The two rotors were investigated 
experimentally in a water flume to compare their performance at different tip speed ratios and 
pitch angles. As a result of the comparison it was found that the Betz rotor had the best 
performance. 

1.  Introduction 
Today almost all aerodynamic designs of wind turbine rotors rely on the blade-element/momentum 

theory as it was formulated in the 1930th by Glauert [1]. This model combines the blade-element 
approach with axisymmetric momentum theory, forming a model which essentially only is valid for 
infinite-bladed rotors. However, including a tip correction makes it possible to employ the theory to 
design practical finite-bladed rotors. On the other hand, there exists another class of methods, based on 
a combination of the blade-element approach and lifting-line (BE/LL) theory, which are less used by 
the wind turbine community. The BE/LL method involves different interpretations for rotors with 
finite or infinite numbers of blades and different assumptions with respect to the optimum circulation 
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distribution. In the model of Betz [2] a variational principle was employed to determine the optimum 
circulation distribution. Based on the criterion of Betz, a theory for finite-bladed rotors was developed 
by Goldstein [3] and later further developed by Okulov and Sørensen [4]. More details about the 
various models can be found in the surveys [5] and [6], and in the text book [7]. 

In the following we will derive the equations forming the basis for the two rotor models and 
employ them to make a comparative study on the rotor geometries and performance resulting from the 
two theories.  In order to test and compare the resulting efficiency of the two design philosophies, the 
results from an experimental investigation on the influence on rotor performances on two different 
rotors will also be presented. Employing BE/M without the tip correction (“Glauert rotor”) and BE/LL 
with the Goldstein’s circulation (“Betz rotor”) two different 3-bladed rotors were designed and 
manufactured. The two rotors were investigated experimentally in a water flume to compare their 
performance at different tip speed ratios and pitch angles. 

2.  Theory 
In this section we outline the basic equations forming the aerodynamic design of optimum Glauert 

and Betz rotors, respectively. 
 
2.1 Design of optimum Glauert rotor 
The design model of Glauert is based on momentum theory applied on differential annular 

elements and various approximations. Of these, the most important is the assumption that the pressure 
change in the wake due to the swirl component of the velocity can be neglected. Without going in to 
details, the following expression is obtained from Glauert’s analysis (see e.g. [1] or [7]): 

 
)1()1( 22 aaxaa ′+′=− λ ,            (1) 

 
where the dimensionless interference coefficients are defined as 
 

0

1 Rua
U

= −  ,  
2
ua
r
θ′ = −
Ω

,            (2)  

 
with Ru denoting the axial velocity in the rotor plane, 0U is the undisturbed wind speed, θu  is the 
swirl velocity in a plane downstream of the rotor, Ω  is the angular velocity of the rotor, and r  is the 

axial position at the rotor plane. Furthermore, the tip speed ratio is defined as 
0U
rΩ

=λ and 
R
rx = , 

where R  is the radius of the rotor. Interestingly, this equation can also be derived by assuming that 
the  

 
 

Figure 1. Cross-sectional element of airfoil showing the velocity triangle and flow angles. 
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relative velocity and the induced velocity are perpendicular in the rotor plane. This is shown in figure 
1 which depicts a cross sectional element of a rotor blade with the velocity triangle inferred as vectors. 
Here the induced velocity is given as ( )0 ,iw aU a r′= − Ω


 and the relative velocity as 

[ ]0(1 ) , (1 )relV a U a r′= − + Ω


. Making the dot product between the two vectors and setting it equal to 
zero, results in eq. (1). 
 
Introducing Euler’s turbine equation on differential form, we get the following expression for the 
useful power produced by the wind turbine, 
 

                
1

2 2 4 3

0 0

2 4 (1 )
R

R oP Q r u u dr R U a a x dxθπ r πr ′= Ω = Ω = Ω −∫ ∫ ,                           (3) 

 
or in dimensionless form, 

                               ( )
12 3

3 0
0

8 1
½P

PC a a x dx
AU

λ
ρ

′≡ = −∫ ,                                                       (4) 

                     
By assuming that the different stream tube elements of the momentum analysis behave independently 
of each other, it is possible to optimize the integrand of eq. (4), ( , ) (1 )f a a a a′ ′= − , for each 
x separately. This result in the following relation for an optimum rotor (see [1] or [7]), 
 

                                          
14

31
−

−
=′

a
aa .                                                                                      (5) 

 
 
Combining eq. (1) with (5), the following equation is derived for the determining the optimum value 
of the axial interference factor, 
                     
                                       3 2 2 2 2 216 24 3 (3 ) 1 0a a a x xλ λ− + − − + = .                                      (6)  
                 
Solving eq. (6) for a given tip speed ratio, gives the distribution of the optimum axial interference 
factor, ( )a a x= , along the blade. Having determined a, ( )a a x′ ′= is next computed from eq. (5), and 
the optimum power performance is finally computed by integration of eq. (4). 
 

2.2 The tip correction 
Since the equations forming the optimum Glauert rotor are based on axial momentum theory, they 

are only valid for rotors with infinitely many blades. In order to correct for finite number of blades, 
Glauert [1] introduced a tip loss factor, which essentially was derived by Prandtl in an appendix to the 
dissertation by Betz [2]. In this method a correction factor, /bF N ∞= Γ Γ ,  is introduced to correct the 
loading (circulation) between an infinite-bladed rotor and an bN -bladed rotor.  An approximate 
formula of the Prandtl tip loss function was introduced by Glauert [1] as follows, 

 
1 ( )2 cos exp( )

2 sin
bN R rF
rp φ

−  − 
= − 

 
,                                                   (7) 
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where )(rφφ =  is the angle between the local relative velocity and the rotor plane (see Fig. 1). 
 

2.3 Design of optimum Betz rotor 
For a rotor with a finite number of blades, Betz [2] showed that the ideal efficiency is obtained 

when the distribution of circulation along the blade produces a rigidly moving helicoidal vortex sheet 
with constant pitch, h , that moves in the direction of the undisturbed flow (in the case of a propeller) 
or against it (in the case of a wind turbine) with a constant velocity w  (see Figure 2). Although Betz 
stated the problem of the wake, he was not able to solve the corresponding circulation distribution 
defining the rotor loading and rotor geometry.  Part of the solution was later given by Goldstein [3] 
using infinite series of Bessel functions and recently a full solution was made by Okulov and Sørensen 
[4]. In the following, the different solution steps of the problem will be presented. 

 
2.3.1 Kinematic properties 

Denoting the angle between the vortex sheet and the rotor plane asΦ , the pitch is given as 
 

Φ= tan2 rh π ,                 (8) 
 

or, in dimensionless form, 
Φ== tan)/(2 RrRhl π ,        (9) 

 
where R  is the radial extent of the vortex sheet. Since the vortex sheet is translated with constant 
relative axial speed, w , the induced velocity is identical to cosw Φ , which is the normal component 
to the screw surface (Figure 2). 

 
Figure 2. (a) Sketch of helical surface representing the ideal far wake; (b) Definition of axial 

displacement velocity of the helical vortex sheet and velocity triangles determining pitch angle and 
geometry of the helical surface. (Okulov and Sørensen [4]). 

 
The axial and circumferential velocity components zu  and uθ  induced at the sheet itself are therefore 
given as (see Figure 2), 
 

ΦΦ= sincoswuθ    and    2coszu w= Φ .           (10) 
 

From simple geometric considerations these equations are rewritten as  
 

( )22 xlwxlu +=θ  and ( )2 2 2
zu wx l x= + ,      (11) 
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where x r R=  is the dimensionless radius, neglecting expansion of the wake. 

Since the movement of the sheet is superposed on the undisturbed wind speed, 0U , it moves with 

axial velocity 0U w−  and angular velocity Ω , and for any point on the n  helical surfaces 

( )1,2, , bn N= 2 , we get 
 

( )2 1 bt n Nθ π= Ω + −      and    ( )0z U w t= − .      (12) 
 

The angular pitch of the screw surface is thus given as  
 

0tan U wdz
rd rθ

−
Φ = =

Ω
,        (13) 

 
and the dimensionless linear pitch is defined as 

( )0tan 1Ul x w
R

≡ Φ = −
Ω

,       (14) 

 
where 0/w w U=  is the dimensionless velocity of the sheet with respect to the surrounding fluid.  
Since each vortex sheet also defines a stream surface, the angular pitch can also be written 
 

0tan zU u
r uθ

−
Φ =

Ω +
.       (15) 

The above introduced parameters define the properties of an infinite sheet in the so-called Trefftz 
plane, which per definition is the plane normal to the relative wind infinitely far downstream of the 
rotor. It now remains to establish the characteristics in the rotor plane in order to utilize the Kutta–
Joukowsky theorem to determine the loading. Assuming the wake to be in equilibrium and neglecting 
the rolling up of the sheet, as a consequence of Helmholtz’ vortex theorem, the bound circulation 0Γ  
about a blade element is uniquely related to the circulation Γ  at a corresponding radius in the Trefftz 
plane. When the trailing wake from the initial deformation form regular helicoidal vortex surfaces, this 
relationship can be expressed as 
 

( ) 





Γ=








Γ l

R
rl

R
r ,, 00

0
0 l ,       (16) 

 
where 0Rr  and Rr  are the dimensionless radii in the rotor plane and at any cross section in the 
wake, respectively. 

If the expansion of the wake is neglected, from symmetry, it is can be shown that the induced 
velocity in the rotor plane is half of the induced velocity in the far wake. A way of showing this, is to 
consider the induction in mid-plane of an infinitely long vortex sheet going from −∞  to ∞ . If half of 
the sheet is removed, such that the remaining part now forms a ‘half-infinite’ sheet going from 0 to ∞ , 
then only the half induction takes place at the end plane (the former mid-plane). Thus, as a first order 
approximation we assume that 

 

0

1
2u uθ θ=   and  

0

1
2z zu u= .       (17) 
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In the rotor plane the angular pitch is given as 
 

( )
0

0

11
0 0 20 2

0 1
0 0 02

tan z z
U u U wU u

r u r u rθ θ

− −−
Φ = = =

Ω + Ω + Ω
 ,      (18) 

 
where 0Ω  now denotes the angular speed of the rotor and 0 ( )φΦ =  is the flow angle in the rotor 
plane.  The last equality in eq. (18) is not obvious, and we refer the reader to [8] for a formal proof. 
The linear pitch in the rotor plane written as 

( ) ( )1
20 1

0 0 2
0 0 0

1
tan 1

wUrl w
R R l

−
= Φ = − =

Ω
.      (19) 

 
 

        2.3.2 Solution procedure 
Goldstein [3] was the first who found an analytical solution to the potential flow problem of a moving 
infinite helical vortex sheet. In his model a dimensionless distribution of circulation was introduced as 
follows  

( ) ( ) hwlxNlxG b ,, G= ,       (20) 
 
defining what later was designated the Goldstein circulation function. In the present work we solve the 
following matrix equation to determine the Goldstein function, 
 

 
2

2 2
i

i

xA
l x

γ  =  +
,                          (21) 

where [ ]1 2, ,..., T
Nγ γ γ γ=  and /i i wγ = Γ , with [ ]1,i N∈ . The elements in the matrix, ija , are 

defined by the induction from vortex element  j on control point i, subject to a unit vortex strength, and 
are determined from the induction equations shown in [4]. 

Employing the Goldstein circulation function ( )0,G x l , now referring to quantities in the rotor 
plane, and introducing the linear pitch from Eq. (19), the total bound circulation in the rotor plane 
reads 

( )( ) ( ) ( ) ( )
2
0 1

0 0 0 0 0 0 0 02
0

, , 2 ( , ) 2 1 ,b
UN r l wh G r l R l wG r l w w G r ll π πG = = = −
Ω

.     (22)

  
Inserting  eqs. (10), (17) and (22) into eq. (3), the power, 0P Q= Ω , can be determined from the 
following integral  

1 2
3 2

0 2 2
00

2 (1 ½ ) (1 ½ )xP V w w R w Gxdx
x l

πρ= − −
+∫ .       (23) 

Performing the integration and introducing the dimensionless power coefficient (eq. 4), we get 
 

( )( )1 1
1 32 22 1PC w w I wI= − − ,                     (24)  

where  
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( )
1

1 0
0

2 ,I G x l xdx= ∫     and    ( )
1 3

3 0 2 2
00

2 , x dxI G x l
x l

=
+∫ .       (25) 

  
The coefficients 1I  and 3I  are usually referred to as the mass coefficient and the axial energy factor, 
respectively.  For more details about the derivation and the behaviour of 1I  and 3I , we refer to [4]. 
For a given helicoidal wake structure, the power coefficients is seen to be uniquely determined, except 
for the parameter w . Differentiation of PC , eq. (24), with respect to w  yields the maximum value of 

,maxPC , resulting in 

  ( )2 2
,max 1 3 1 1 3 3

3

2( )
3P Pw C C I I I I I I

I
= = + − − + .      (26) 

Combining eqs. (11) and (17), the following equation is obtained for determining the interference 
factors in the rotor plane, 

2

2 2
0

½ xa w
x l

=
+

   and   
( )

0
2 2

0

½ la w
x ll

′ =
+

.         (27) 

 
 

2.4 Blade geometry 
To determine the blade geometry of the designed rotor we employ the Kutta-Joukowsky theorem, 

from which we have the following expression, 
 

                                                    
2

b rel b l
rel

N L V N C
cV

r Γ
= Γ⇒ = ,        (28) 

where bN is the number of blades, L is the lift on each blade, lC is the local lift coefficient, and 
Γ denotes the total circulation acting on the blades. From the circulation theorem we have 2 ruθπΓ = , 
which, combined with eq. (7), gives the following expression for the chord distribution, 
 

                                                         
4( )

b l rel

ruc r
N C V

θπ
= .         (29) 

 

Introducing the solidity, 
2

bN c
R

σ
π

≡ , and the interference factors defined in eq. (2), we get the 

following dimensionless expression for the planform of a rotor blade 
 

2

2 2 2 2

4
(1 ) (1 )

l
x aC

a x a
lσ
l

′
=

′− + +
.        (30) 

 
This equation is quite general and will have to be associated with a set of equations for determining 
the distribution of the inference factors. From Figure 1 the local inflow angle is determined as, 
 

                                                        
1tan
(1 )

a
x a

φ
λ

−
=

′+
 .             (31) 
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3.   Comparison of blade geometries 
In this section we compare the blade geometries for rotors designed using the equations derived in 

the previous section. Below we show some of the main results from the analysis.  
 
 

  

 

   
 

Figure 3. Comparison of chord and local pitch (twist) distributions for rotors at a tip speed ratio of 3. 
 

 
 

  

 

 
Figure 4. Comparison of chord and local pitch (twist) distributions for rotors at a tip speed ratio of 6. 

 
 
 

  

 

 
Figure 5. Comparison of chord and local pitch (twist) distributions for rotors at a tip speed ratio of 9. 

 
In Figs. (3) – (5) blade plan forms and local pitch (twist) distributions are shown for rotors 

designed for tip speed ratios 3, 6 and 9, respectively.  For the Glauert rotor, the blade plan form is 
shown both with and without tip correction. For a tip speed ratio of 3 (Fig. 3) large differences are 
seen more or less over the full span of the rotors. However, designing the rotor at a tip speed ratio 6 
(Fig. 4), about 60 % of the outer part of the geometry is identical, independent of the employed 
aerodynamic model. Here it is also seen that the ‘classical’ Prandtl/Glauert tip correction indeed 
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represents a very good approximation to the full theoretical solution outlined by Betz. However, it is 
also seen that the inner parts are different. In particular this is the case for the local pitch angle, which 
in the Glauert model tends to 600, whereas it in the model of Betz becomes equal to 900 at the root 
section. In the Glauert case this can be deduced by evaluation of eqs. (1), (6) and (31), showing that 
a =1/4, 4 3xaλ ′→ , and tan 3Φ→  for 0x → . In the case of the Betz rotor, it follows directly 
from eq. (13) that 090Φ→  when the radius goes to zero. In general, the differences between the 
geometries disappear at high tip speed ratios, e.g. at a tip speed ratio of 9 (Fig. 5), the outer 75% of the 
blades are identical within plotting accuracy.  
 

4.  Experimental test of 3-bladed Glauert and Betz rotors 
Two laboratory models of a 3-bladed rotor were designed with diameter D = 0.376m, a hub radius 

of 0.029m, and a blade of length 0.159m [9]. The blade chord and flow angle were determined at 
optimum operating conditions at a tip speed ratio λ = 5 using the BE/M without tip correction 
(Glauert’s rotor) and BE/LL (Betz’ rotor) theories, respectively. In Fig. 6 the measured power (CP) and 
thrust (CT) coefficients are compared as function of tip speed ratio for the two rotors. We will not here 
go into the details of the experiment, but just note that the Betz rotor achieved higher power and thrust 
coefficients at all operating tip speed ratios. The most likely reason for the difference is that the tip 
correction was not included in the design of the Glauert rotor. However, we do not have the full data 
to show if this is a general tendency or if it is only for the tip speed ratio for which the two turbines are 
designed (λ = 5). This will be the topic of a future study on aerodynamic design of optimum rotors. 

 
 

  

 

 
Figure 6. Experimental power and thrust coefficients of 3-bladed rotors designed using Glauert’s model without 

tip correction and Betz’s rotor with Goldstein’s circulation distribution along the blades.  

 

5. Conclusions 
Two different design philosophies for designing optimum wind turbine rotors have been outlined 

and discussed. One of them (the Glauert rotor) is based on momentum theory whereas the other is 
based on lifting line or vortex theory (the Betz rotor). A comparison of the final design resulting from 
the rotor models shows that the main differences are to be found in the inner part of the rotor and that 
this difference is most pronounced at small and moderate tip speed ratios. Furthermore, a very positive 
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observation is that the approximate Prandtl/Glauert tip correction indeed represents the Goldstein 
circulation at the outer part of the rotor and that the classical infinite-bladed approximation with tip 
correction seems to be in very good agreement with the actual circulation distribution given by the 
Goldstein function. 

A laboratory test of two different rotor designs, one based the infinite-bladed approach (Glauert 
rotor without tip correction) and one based on a finite-bladed approach (Betz rotor), demonstrated the 
importance of including the tip correction in the design.  
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