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Abstract. A conservative level-set model for direct simulation of two-phase flows with
thermocapillary effects at dynamically deformable interface is presented. The Navier-Stokes
equations coupled with the energy conservation equation are solved by means of a finite-
volume/level-set method. Some numerical examples including thermocapillary motion of single
and multiple fluid particles are computed by means of the present method. The results are
compared with analytical solutions and numerical results from the literature as validations of
the proposed model.

1. Introduction

When a fluid particle (bubble or drop) is placed in a second fluid in which a temperature gradient
is imposed, it will move from the region with higher temperature to that with lower temperature
so that the surface energy is minimized. This effect is called thermocapillary or Marangoni
migration. It arises as a consequence of the local surface tension gradients on the fluid-fluid
interface caused by temperature distribution. In addition to its importance from a fundamental
point of view, it provides a particularly attractive means for manipulation of continuous fluid
streams or fluid particles, in applications involving microgravity [1] or microdevices [2].

The thermocapillary motion of a drop was first examined experimentally by [3], who also
found an analytical expression for its terminal velocity in the creeping flow limit (YGB theory),
in which convective transport of momentum and heat can be neglecting, Since then, many works
have been performed experimentally, analytically and numerically [4, 5]; most of the research
on this phenomenon has been summarized by [1]. Additionally some numerical methods have
been developed to include the deformation of the droplets, however, to the best of the author’s
knowledge there are not previous works on thermocapillary motion by means of the conservative
level-set method [6, 7, 8]. Therefore, it is the purpose of this work to introduce a general
numerical technique for simulating thermocapillary motion of deformable fluid particles, so that
effects such as heat convection, container walls or the interaction of multiple fluid particles can be
included. Thus, this paper contains the modeling and implementation of the thermal Marangoni
stresses within the framework of the unstructured finite-volume/level-set solver introduced in our
previous papers [6, 7]. This paper is organized as follows: The governing equations and numerical
method are presented in section 2. Numerical results are included in section 3. Concluding
remarks and future work are discussed in section 4.
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2. Governing equations and numerical method

The Navier-Stokes equations for the dispersed fluid in Ωd = Ω1
d ∪ ... ∪ Ωnd

d and continuous fluid
in Ωc can be combined into a set of equations in a global domain Ω = Ωd ∪ Ωc, with a singular
source term for the surface tension force at the interface Γ = Γ1 ∪ ... ∪ Γnd

:

∂(ρv)

∂t
+∇ · (ρvv) = −∇p+∇ · μ

(
∇v+ (∇v)T

)
+ ρg+ fσ(T )

∇ · v = 0 (1)

ρ = ρdHd + ρc(1−Hd) μ = μdHd + μc(1−Hd) (2)

where v and p denote the fluid velocity and pressure field respectively, ρ is the fluid density, μ is
the dynamic viscosity, g is the gravitational acceleration, fσ is the surface tension force defined
as function of the temperature T , subscripts d and c are used for the dispersed and continuous
fluids respectively, nd is the number of separated interfaces in the dispersed fluid [7], superscript
T is the transpose operator, whereas Hd is the Heaviside step function that is one in Ωd and
zero elsewhere.

The conservation of energy in the form of the temperature equation, can be written as

∂T

∂t
+∇ · (vT ) =

1

ρcp
∇ · (λ∇T ) in Ω (3)

with λ the thermal conductivity, and cp the heat capacity, defined as

λ = λdHd + λc(1−Hd) cp = cp,dHd + cp,c(1−Hd) (4)

The two major challenges of simulating interfaces between different fluids are to maintain
a sharp front and to compute the surface tension accurately [9]. Regarding the first issue, the
conservative level-set method (CLS) [8] deployed by [6] in the framework of unstructured meshes
has been selected for interface capturing. Moreover, multiple level-set functions are used in order
to avoid the coalescence of the fluid particles, according to the work reported by [7]. Therefore,
the interface of the i− th fluid particle is defined as the 0.5 iso-surface of a regularized indicator
function φi, where i = 1, 2, ..., nd and nd is the total number of fluid particles contained by the
dispersed phase. The i − th interface transport equation can be written in conservative form
provided the velocity field is solenoidal, ∇ · v = 0, namely,

∂φi

∂t
+∇ · φiv = 0 , i = 1, 2, ..., nd (5)

Furthermore, an additional re-initialization equation is introduced in order to keep a sharp and
constant interface profile

∂φi

∂τ
+∇ · φi(1− φi)ni = ∇ · ε∇φi , i = 1, 2, ..., nd (6)

This equation is advanced in pseudo-time τ up to steady state. It consists of a compressive
term, φi(1 − φi)ni|τ=0, which forces the level-set function to be compressed onto the interface
along the normal vector ni, and of a diffusion term ∇ · ε∇φi that ensure the profile remains of
characteristic thickness ε = 0.5h0.9, with h defined as the grid size. The reader is referred to [6]
for technical details on the selection of ε.

Geometrical information on the interface Γi, such as normal vector ni or curvature κi, is
obtained through:

ni(φi) =
∇φi

‖∇φi‖
κi(φi) = −∇ · ni , i = 1, 2, ..., nd (7)
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Surface tension forces are calculated by the continuous surface force model [10], which is adapted
to the multiple-marker/level-set method introduced by [7], and extended to take into account
the variation of surface tension with temperature

fσ =

i=nd∑
i=1

(σ(T )κi(φi)ni −∇σ(T ) + ni(ni · ∇)σ(T )) ||∇φi|| (8)

The surface tension coefficient is taken to be a linearly decreasing function of the temperature

σ = σ0 − σT (T − T0) (9)

where σT = −dσ/dT = constant, σ0 is the surface tension at the reference temperature T0.
Furthermore, in order to avoid numerical instabilities at the interface, fluid properties in Eq.

2 and Eq. 4 are regularized by means of a global level-set function Hd = φd [7]

φd(x, t) = max{φ1(x, t), ..., φnd−1(x, t), φnd
(x, t)} (10)

Following the work introduced by [6], the Navier-Stokes equations, Eq. (1), and energy
equation, Eq. (3), have been discretized by means of the finite-volume method on a collocated
unstructured grid. A TVD-Superbee limiter scheme [11, 6] is used to approximate the convective
term of momentum Eq. (1), energy Eq. (3) and interface transport Eq. (5); while diffusive
terms are centrally differenced. A distance-weighted linear interpolation is used to find the cell
face values of physical properties and interface normals, while gradients are computed at cell
centroids by using the least-squares method [6]. Regarding the re-initialization Eq. (6), a central
difference scheme is used to discretize both convective and diffusive terms.

Thus, the global algorithm can be summarized as follows

(i) Initialize v(xP , 0), φ(xP , 0), physical properties and interface geometric properties.

(ii) The time increment, Δt, is calculated taken into account the CFL conditions and the
stability condition for the capillary force [10]. Detailed information is given in [6].

(iii) The interface is advected by means of the CLS method deployed in [6].

(iv) Eq. 3 is solved for the temperature field using an explicit Euler discretization in time.

(v) Physical properties (ρ, μ, λ, cp) are updated at each control volume, whereas surface tension
coefficient, σ(T ), is calculated by Eq. (9).

(vi) The velocity field is computed by means of a fractional-step method [12] adapted to
collocated unstructured grids with variable density, as is explained in [6].

(vii) In order to avoid pressure-velocity decoupling when the pressure projection is made on
collocated meshes [13], a cell face velocity vf is calculated so that ∇ · v = 0 at each control
volume [6]. Namely in discretized form:

vf =
∑

q∈{P,F}

1

2

(
vn+1
q +

Δt

ρ(φn
q )

(∇hp
n+1)q

)
−

Δt

ρf
(∇hp

n+1)f (11)

where P and F are denoting the adjacent cell nodes with a common face f .

(viii) Repeat steps ii-vii until time step required.

The reader is referred to [6, 7, 14, 15] for technical details on the finite-volume discretization
and numerical methods used to solve the Navier-Stokes and Level-set equations on unstructured
meshes. Further verification and validation of the CLS model used in this work, in the context of
isothermal flows with constant surface tension can be found in [6, 7, 14]. The present numerical
algorithms were implemented in the framework of a parallel C++/MPI code called TermoFluids
[16].
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Mesh (DΩ,HΩ) Cells Cells/plane Nplanes Cell geometry h

M1 (8d, 8d) 9.40 × 105 4700 200 hexahedral d/25
M2 (8d, 8d) 1.79 × 106 7440 240 hexahedral d/30
M3 (8d, 8d) 2.78 × 106 9940 280 hexahedral d/35
M4 (8d, 8d) 4.09 × 106 12800 320 hexahedral d/40

Table 1. Mesh parameters used in 3D simulations of thermocapillary motion of isolated fluid
particles. Here Nplanes is the number of planes in which the symmetry axis of Ω is divided.

3. Numerical results and discussion

The Marangoni motion of bubbles and drops can be characterized in terms of the following
non-dimensional parameters

Ma =
Ur(d/2)ρccp,c

λc
Re =

Ur(d/2)ρc
μc

Ca =
Urμc

σ0
(12)

ηρ =
ρd
ρc

ημ =
μd

μc
ηλ =

λd

λc
ηcp =

cp,d
cp,c

(13)

where the subindex c refers to the continuous phase, the subindex d refers to the drop fluid phase,
Ur = σT ||∇T∞||(d/2)/μc is the named thermocapillary velocity, d is the initial droplet diameter,
||∇T∞|| is the temperature gradient imposed in the continuous fluid, Re is the Reynolds number,
Ma is the Marangoni number, Ca is the capillary number, whereas {ηρ, ημ, ηλ, ηcp} are the
ratios of physical properties. In addition, Lr = d/2, Ur and Tr = (d/2)||∇T∞|| denote the
characteristic scales of length, velocity and temperature. Therefore the dimensionless velocity,
V ∗ = (ey · vc)/Ur with vc =

∫
Ω
φvdV/

∫
Ω
φdV , and dimensionless time, t∗ = 2tUr/d, will be

used to express the numerical results.
The present model is used to simulate the thermocapillary migration of a drop in an ambient

liquid without gravity. The fluids are initially at rest and the temperature linearly increases
from the cold bottom wall toward the hot top wall

T (x, y, z) = Tb +
Tt − Tb

HΩ

y = Tb + ||∇T∞||y (14)

with Tt the temperature of the top wall and Tb the temperature of the bottom wall.
In present simulations, a 3D cylindrical domain Ω of diameter DΩ = 8d and height HΩ = 8d

is considered. Ω is divided by hexahedral control volumes generated by a constant step
extrusion h = HΩ/Nplanes, of a two-dimensional unstructured grid of quadrilateral cells along the
symmetry axis of Ω, as is summarized in Table 1. In order to maximize the droplet resolution, the
mesh was concentrated around the symmetry axis of Ω using a constant grid size, h, which grows
exponentially to the border where it reaches a maximum size. A spherical drop of diameter d is
placed on the symmetry axis of Ω, at 1.5d above the bottom wall. No-slip boundary conditions
are applied on the top and bottom walls, and Neumann boundary condition is used on the lateral
wall.

In the limit of zero Marangoni number and small Reynolds number, [3] derived the named
YGB theory for the prediction of the steady state migration velocity (UY GB) of a drop in an
infinite domain with constant temperature gradient field, ||∇T∞||, such that the convective
transport of momentum and energy are negligible

UY GB

Ur
=

2

(2 + 3μd/μc)(2 + λd/λc)
(15)

where all the physical properties are assumed to be constant except for the surface tension,
which is assumed to vary linearly with temperature.

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032113 doi:10.1088/1742-6596/745/3/032113

4



Figure 1. Migration velocity versus time. (a) Re = Ma = Ca = 0.066̄, ηρ = ημ = ηcp = ηλ =
1.0. (b) Re = Ma = 0.01, Ca = 0.0166̄, ηρ = ημ = ηcp = ηλ = 0.5.

Mesh
M1 M2 M3 M4

V ∗ 0.1946 0.2057 0.2088 0.2112
εr 7.9% 2.6% 1.1% −

Table 2. Grid convergence of V ∗, for Re = Ma = 0.01, Ca = 0.0166̄, ηρ = ημ = ηcp = ηλ = 0.5,
and εr = |(V ∗ − V ∗

h=d/40)/V
∗
h=d/40|.

A first test case is simulated in the limit of low Ma and Re numbers, with Re = Ma = 0.01,
Ca = 0.0166̄, ηρ = ημ = ηcp = ηλ = 0.5. For these parameters, the theoretical migration
velocity of a spherical drop, calculated by means of Eq. 15, is UY GB/Ur = 0.2285. Fig. 1a
shows the temporal evolution of the dimensionless migration velocity, V ∗ = (ey · v)/Ur, versus
dimensionless time, t∗, using the present method with different grid resolutions. The influence
of the grid size, h, is summarized in Table 2. It is found that the difference in the calculated
migration velocities is no more than 1% between the meshes with h = d/35 and h = d/40,
therefore the finest mesh resolution h = d/40 is selected for discussion of the results.

Fig. 1a also shows that the proposed numerical method converges to an asymptotic value
V ∗/UY GB = 0.96 which is comparable to the value 0.96 reported in [17] using a level-set model,
and the value 0.97 calculated by [18] using the front-tracking method [9]. The slower rise
velocities in the finite domain simulations compared with the theoretical migration velocity for
the unbounded problem is probably due to the confinement effect. Thus, the proposed method to
include variable surface tension in the framework of the finite-volume/level-set method [6] yields
to stable results, consistent in accuracy with other state-of-art methods from the literature.

As further validation, the proposed numerical method is used to solve a 2D test case
introduced by [19]. The material property ratios ηρ, ημ, ηcp and ηλ are set to 0.5, whereas
the nondimensional parameters are chosen as Re = 5, Ma = 20, and Ca = 0.01666. The
computational domain is a rectangle extending 4d in the x direction and 8d in the y direction,
where d is the drop diameter. The drop is initially located to the distance d above the bottom
wall, on the vertical symmetry axis of the rectangular domain. The top and bottom walls are
no-slip boundaries with constant temperature, and the horizontal boundaries are periodic.

Figure 1b presents the migration velocity of the drop versus time, computed by means of the
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Figure 2. Re = 5, Ma = {1, 10, 50, 100}1, Ca = 0.1, ηρ = ημ = ηcp = ηλ = 1.0 (a) Migration
velocity versus time. (b) Isotherms at t∗ = 40, with h = d/35, mesh M3 in Table 1.

present method, on uniform cartesian meshes with 64×128, 128×256 and 256×512 grid points.
It is clear from the aforementioned Figure that present computations are in excellent agreement
with results reported by [19] using the front-tracking method [9]. Moreover, it is observed that
V ∗ converges with mesh refinement, whereas the difference in V ∗ calculated with h = d/128 and
h = d/64 is bellow 1.2%.

Fig. 2 shows the effect of the Marangoni number on the migration velocity of the droplet, for
Re = 5, Ma = {1, 10, 50, 100}, Ca = 0.1, ηρ = ημ = ηcp = ηλ = 1.0, computed on the mesh M3

as is described in Table 1. It is observed from Fig. 2a that an increase on Ma leads to a decrease
in the migration velocity, which is consistent with simulation results reported by [20], [21] and
[22]. Fig. 2b presents temperature contours at different Marangoni numbers, furthermore, it
is observed that the convective transport of momentum and energy as Ma increases, results in
a major distortion of the isotherms. Contrary to cases with Ma ∼ 1, where the contours are
almost a straight line, in cases with Ma � 1 the isotherms tend to wrap around the drop.

Finally, the ability of the proposed level-set model is proved by simulating the Marangoni
motion of 9 drops for Re = 40, Ma = 40, Ca = 0.04166̄, ηρ = ημ = ηcp = ηλ = 0.5. The domain
consists of a rectangular box with Lx×Ly ×Lz = 4d× 8d× 4d, where d is the droplet diameter.
It is discretized using a uniform cartesian mesh of 160×160×320 grid points, which is equivalent
to 8.192 × 106 control volumes or h = d/40. No-slip boundary condition is applied in all the
walls, constant temperatures Th and Tc are fixed on the top and bottom boundaries respectively,
with Th > Tc, whereas lateral walls are adiabatic. Nine equal size drops are placed arbitrary
close to the lower cold wall. Fig. 3 shows the time evolution of migration velocities and vertical
component of the drop centroids. Fig. 4 presents the visualization of the temperature contours
on the plane z = 0, and the position of the drops at the time t∗ = 65. From these figures, it
is evident the formation of a layer of drops located on the same horizontal plane as the time
increases. Moreover, droplets do not collide with the wall during the migration process. These
results are consistent with qualitative descriptions reported by [19, 23] using the front tracking
method [9].
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Figure 3. Thermocapillary interaction of 9 drops, Re = 40, Ma = 40, Ca = 0.0466̄,
ηρ = ημ = ηcp = ηλ = 0.5 (a) Migration velocity versus dimensionless time. (b) Droplet
centroids versus dimensionless time.

Figure 4. Thermocapillary interaction of 9 drops, Re = 40, Ma = 40, Ca = 0.0466̄,
ηρ = ημ = ηcp = ηλ = 0.5 (a) Temperature contours at z = 0 at t∗ = 65. (b) Vorticity
contours and velocity vectors on the plane z = 0 and time t∗ = 65.

4. Conclusions

In this paper, a level-set model for two-phase flows with thermocapillary effects at deformable
interfaces has been introduced, which allows to the incompressible fluids to have different physical
properties. To the best of the author’s knowledge, this is the first time that thermocapillary
effects are modeled in the framework of the conservative level-set method [6, 7]. The model
has been validated against theoretical and numerical results from the literature, and then it
has been used to explore the thermocapillary interaction of 9 droplets, avoiding the numerical
coalescence of the fluid particles. Present results demonstrate that the proposed level-set model

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032113 doi:10.1088/1742-6596/745/3/032113

7



is a reliable and accurate method for numerical simulation of thermocapillary flow. In future
work, the present model could be extended to include surfactants and phase change phenomena.
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