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Abstract. The surface integral equations method is used to analyse the surface plasmon 

resonance position in a metal island film formed by non-interacting axisymmetrical 

prolate/oblate hemispheroids placed on a dielectric substrate. The approach is verified via the 

comparison of results obtained for a hemisphere on a substrate with the ones obtained using the 

multipole expansion method. The preference of the integral equations method is in obtaining a 

simple final analytical expression for a particle polarizability in which any dielectric function 

of a metal can be substituted. Such simple formulae for the hemispherical particle on the 

substrate and calculated dependences of the hemispheroid resonant wavelength on its aspect 

ratio are presented. 

1.   Introduction 

The surface plasmon resonance (SPR) phenomenon in metal nanoparticles [1] is of a particular interest 

for both applied optics/plasmonics and fundamental physics. A special and interesting case of metal 

nanoparticles are metal island films (MIF) which can be used as polarizers and spectral filters [2] and, 

because of the high enhancement of the local electric field, in Raman spectroscopy [3]. The spectral 

position of the SPR in MIF is usually calculated for metal nanoislands of a hemispherical shape 

observed in experiments [4]. Using the multipole expansion method [5, 6] the dependences of the SPR 

wavelength on the dielectric permittivity of the substrate and on the dielectric constant and the 

thickness of a layer covering the nanoparticles were calculated [7]. However, not hemispherical but 

hemispheroidal shape of metal nanoislands has recently also been reported [8], the nanoislands being 

axisymmetric prolate/oblate hemispheroids (see Figure 1). This makes important the understanding of 

plasmonic characteristics of such nanoparticles and, respectively, of MIF formed by metal 

hemispheroids.  

To describe plasmonic properties of a particle it is usually enough to find its polarizability 

dispersion. In the case of free standing spherical and spheroidal nanoparticles there are the analytical 

solutions allowing one to find the SPR frequency and the absorption spectrum [9, 10]. However, the 

majority of even relatively simple shapes of metal nanoparticles require applying numerical techniques 

to describe their polarizability. Diverse numerical and semi-numerical methods allow this, and below 

we present the application of the surface integral equations method [11, 12] to the semi-numerical 
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analysis of the SPR in a metal hemisphere and an axisymmetrical metal hemispheroid placed on a 

dielectric substrate. 

2.  The approach 

We consider a plasmonic particle with somehow induced surface charges of a density (r) and 

surrounded by a dielectric medium with permittivity εout. General relations of the Potential Theory [13] 

and the standard boundary conditions lead to the equation [12]: 
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Here the index k corresponds to a particular plasmonic mode,    outkoutkk   / , εk is the 

particle permittivity at which the k
th
 plasmonic mode can be excited, r and s are position vectors of 

points on the nanoparticle surface, )(rn  is a unit vector normal to the surface (see Figure 2). Eq. 1 is 

an eigenvalue problem which determines all possible surface plasmon modes in the particle. Since the 

plasmonic resonant frequency is to be found, it is convenient to consider the permittivity of the 

surrounding dielectric, εout, as a parameter. Note that the particle permittivity εk defines an eigenvalue 

λk and corresponds to the k
th
 distribution of surface charge density k(r). These values εk are called 

resonant permittivities. 

 

 

Figure 1. The example of an atomic force 

microscope (AFM) measured profile of a 

particle. The nanoisland is a prolate 

hemispheroid with the aspect ratio ~ 1.3. 

Figure 2. The scheme of the problem 

If an external electric field E0(r) is applied to the nanoparticle, Eq. 1 transforms to:  
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Note that Eq. 2, as well as Eq. 1, can be written in a more general form using the Green function

),( srG :  
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Here 
1

-),(


 srsrG  for charges distributed in a homogeneous medium. In Eq. 2, λ is no longer an 

eigenvalue, and it is defined by the permittivity ε(ω) of the particle at a certain frequency ω: 

   outout   )(/)( . The solution of Eq. 2 can be presented through the expansion by the 

eigenfunctions given by Eq. 1:  

Saint Petersburg OPEN 2016 IOP Publishing
Journal of Physics: Conference Series 741 (2016) 012120 doi:10.1088/1742-6596/741/1/012120

2



 

 

 

 

 

 

  



k

kk

k

k )()();()(
2

)( 0 rr'r'Er'nr 







 , (3) 

where τk is a corresponding eigenfunction of the equation adjoint to Eq. 1, λk is a corresponding 

eigenvalue,  and   ')()()()();()( 00 dSk

S

k r'r'Er'nr'r'Er'n   . According to Ref. 12, the solutions 

of Eq. 1 and the adjoint one form two biorthogonal sets: ij

S

ji dS   )()( ss , where ij  is the 

Kroneckers delta. Since the eigenfunctions of Eq. (1) do not form an orthogonal set because the kernel 

of the equation is not symmetrical, it is convenient to use the eigenfunctions of the adjoint equation in 

the expansion (3). Note that the adjoint equation describes the surface dipole density which provides 

the same electric field as a single charged layer [12].  

The particles dipole momentum, p, and, respectively, the polarizability, α ( 0Ep  ), are given by 

the formula:  
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The values εk are called the resonant permittivities since the polarizability increases greatly when 

ε(ω) εk. Hereinafter, we use notification εres for εk. 

The substrate influence can be considered [12] using the method of mirror images. In this case the 

Green function transforms from 
1

-),(


 srsrG  to )/()(--),(
11

outsuboutsubsubG  


s'rsrsr

[12], where s'   is the mirror image of s  in the substrate. This Green function should be substituted in 

all the equations written above instead of 
1

-),(


 srsrG .  

The formula (4) allows calculating the polarizability and, respectively, the SPR position. The most 

time-consuming routine here – eigenvalues and eigenfunctions calculation – should be run only twice 

(for Eq. 1 and for the adjoint one), and the calculation of the polarizability spectral dependence does 

not require direct numerical study that considerably simplifies the analysis. Contrary, other techniques, 

like the multipole expansion method [5], the discrete dipole approximation (DDA) [14] or the finite 

elements methods (FEM) [15], require full calculation cycle for each spectral point. 

3.  Polarizability of hemispherical nanoparticles 

Below we present the numerical solution of Eq. 1 and the adjoint one using the surface discretization. 

To be more specific we consider the external electric field E0 directed along the substrate surface; this 

corresponds to an incident s-polarized electromagnetic wave. We also assume that metal particles 

under consideration are much smaller than the light wavelength [4]. This allows neglecting retardation 

of the electric field phase that is to consider the problem within the frames of quasistatic (dipole) 

approximation [16]. In these assumptions we analyse the polarizability dispersion, α(ω),  of  a metal 

hemisphere placed on a dielectric substrate. 

Keeping in (4) the resonant term only, allows obtaining a simple formula for the polarizability 

spectral dependence in general form:  

  
resout

outAR

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






/)(

1/)(
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where scale coefficient A and resonant permittivity εres depend on specific problem geometry and 

substrate permittivity εsub; R
3
 is a dimensional factor.  

In case of a hemispherical particle in a homogeneous medium (εsub= εout) and on a substrate with 

εsub/εout =2.25 we, respectively, obtain:  
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where the resonant permittivities 3.95; 6.61 are the direct result of the eigenvalues calculations and the 

scale coefficients 0.63; 0.52 are defined by the integrals in Eq. 4. All these values depend on the 

substrate permittivity because it appears in the kernels of the integral equations. The results presented 

by formulae like (6, 7) are the indisputable advantage of the used approach: the analysis of the 

polarizability spectral dependence does not require direct numerical study - it is enough to substitute 

specific dielectric function ε(ω) in Eqs. 6, 7. In Figure 3 we plot the dependences of the magnitude 

coefficient, A, and the resonant permittivity, εres, on the substrate dielectric constant. The plots in 

Figure 3 allow one to find the polarizability of a metal hemispherical particle with a dielectric function 

ε(ω) for given permittivities of the substrate, εsub, and the surrounding media, εout. 

 
 

Figure 3. The dependences of the magnitude 

coefficient, A, and the resonant permittivity, 

εres, on the substrate dielectric constant, εsub. 

Figure 4. The dispersion of the real (upper row) 

and the imaginary (lower row) parts of 

polarizability of silver and gold hemispheres on a 

glass substrate (εsub = 2.25) in the air (εout = 1). 

Solid lines correspond to the results of the surface 

integral equations method, dash lines – multipole 

expansion method [6, 7]. The polarizability is 

normalized to dimensional factor R
3
. 

4.  Surface integral equation method vs multipole expansion method 

To verify the approach under discussion, we calculate the polarizability dispersion, α(ω),  of silver and 

gold hemispheres on a glass substrate with εsub=2.25 in the air, εout=1, and compare these with the 

results of multipole expansion method [6, 7], see Figure 4. The metals permittivities are taken from 

[17]. The calculated polarizability is normalized to dimensional factor R
3
. Thus, the dependences in 

Figure 4 are dimensionless.  

There is a slight discrepancy between the results given by these two approaches: 3-5 nm difference 

in the resonant wavelengths and about 20% difference in magnitudes. However, inasmuch as both 

methods are approximate this discrepancy does not seem to be crucial. 

The result for a hemisphere in a homogeneous medium also coincides well with the outcome of the 

multipole expansion method. According to [18], the SPR in a metal hemisphere in a homogeneous 

medium occurs if 4/)( out . The surface integral equations method gives the value -3.95 (see Eq. 

6). 
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5.  Polarizability of prolate/oblate hemispheroids 

We use the surface integral equations approach to find the polarizability spectra and the SPR 

wavelengths of axisymmetrical hemispheroids differing in aspect ratio (Figures 5, 6). Figure 5 

illustrates the polarizability dispersion of silver and gold hemispheroids with aspect ratio h/R=0.7 and 

aspect ratio h/R=1.5.  

 

Figure 5. The dispersion of the imaginary part of polarizability of silver (left) and gold (right) 

hemispheroids with different aspect ratios (h/R) on a glass substrate ( 25.2sub ). The polarizability 

is normalized to the dimensional factor hR
2
. 

As expected, the resonant polarizability for s-polarization grows with the redistribution of metal 

from height to lateral direction. SPR wavelength also grows tending to approach to the polarizability 

of a thin disk. One can see that the red shift of the SPR about 50 nm occurs after the decrease in the 

aspect ratio from 1.5 to 0.7, about two times. 

In Figure 6 we present dependences of hemispheroids resonant wavelength on their aspect ratio. 

The curves are calculated for silver and gold particles and for different substrate dielectric constants. 

 

Figure 6. The dependence of the resonant wavelength on the aspect ratio of silver (left) and gold 

(right) hemispheroids for different substrate permittivities. 

Note that the higher substrate permittivity corresponds to the wider range in which the resonant 

wavelength varies. The behavior of the calculated dependences qualitatively corresponds to the trend 

well known from the analytical expressions obtained for spheroids in a homogeneous medium [9, 10].  
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6.  Conclusion 

We used the surface integral equations method to calculate the polarizability dispersion of a metal 

hemisphere placed on a dielectric substrate and compared the result with the one obtained using the 

multipole expansion method. The comparison evidenced reasonable coincidence of the results 

obtained with these techniques. The preference of the surface integral equations method is in the 

simple analytical expression for polarizability spectrum derived. The dependences of numerical 

parameters in the expression on a substrate dielectric constant were presented. The importance of this 

result is in avoiding numerical calculations for estimating a particle polarizability dispersion and the 

SPR wavelength. Used approach allowed us to analyze the influence of an axisymmetrical 

hemispheroid aspect ratio on the polarizability spectrum. Finally we presented the dependences of the 

SRP wavelength on silver and gold nanoislands aspect ratio. All the results presented are applicable to 

sparse MIF covered with dielectrics and can be used to estimate their SPR position and the 

polarizability.  
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