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Modeling of crystal growth in heteroepitaxial systems 

O I Moroz, M V Makarets

Department of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, 

Ukraine 

Abstract. This paper investigates the elastic deformation of the structure containing InAs 

nanoclusters in a pyramid, grown on the substrate GaAs. So far the data have not been grown 

quantum dots (QDs), one of the reasons is significant difference of periods, which reaches 7%. 

Ideally atomic plane on the border of QDs and substrate must continuously sews. Due to the 

difference in lattice periods crosslinking occurring deformations and mechanical stresses, the 

magnitude of which is proportional to the number of atomic planes, the size of base of the 

pyramid. Therefore, when you reach a certain size islands (quantum dots), they may experience 

mechanical stresses crp  sufficient for the appearance of structural defects - dislocations, 

fractures. 

1. Introduction.

One of the methods of forming quantum dots is based on semiconductor nanostructures self 

organization during its epitaxial growth [1]. Mechanical stresses in epitaxial film of future quantum 

dot (QD) material and in its islands on the surface of the substrate are critical in the transition from the 

film’s growth to growth of islets (Stranski-Krastanov mechanism [2,3]).These stresses are important in 

the further growth of QD in size, changing of its shape and its distribution on the substrate. Notable 

among material for QD occupies the binary semiconductors of the III VA B  family such as InAs, InSb 

[4]. The problem for the cultivation of such QD is the absence of complementary substrates with a 

close lattice period. Thus, the lattice mismatch periods in QD and in the coming per period substrate 

for InAs/GaAs system equals to about 7%, and for InSb/GaAs system  – 14.5% [4,5]. As a result, in 

the QD-substrate interface there are occurred the mechanical stresses and deformations, the magnitude 

of which increases with the number of cross-linked atomic planes of that fundamental size of QD, 

which is often the pyramid . Therefore, when one reaches a certain size of QD, then the mechanical 

stresses crp appear,  the value of which is sufficient for the appearance of structural defects namely – 

fractures, dislocations, etc. [5,6]. 

In this regard there is still the urgent task to find the mechanical stresses and deformations in 

InAs/GaAs systems and to estimate the size of QD, the achievement of which in the process of  

growth process there is running the conditions for the formation of structural defects. It is divided into 

two tasks: i) to find the stresses and deformations occurred in the InAs/GaAs heteroepitaxial system; 

ii) to obtain an estimate of the size of the QD the achievement of which there are appeared the

mechanical stresses sufficient for the formation of defects. 

2. The calculation of stresses in the InAs/GaAs system.

2.1.Issue formation. 

Let’s consider the InAs/GaAs heteroepitaxial system of two binary semiconductors in the vicinity of 
the QD/substrate interface − figure 1. We assume that QD of InAs has the shape of a square pyramid 

with bases in length l and height h . The QD base’s length and height are linked with its growth on a 

substrate particularly due Wolf-Cashew theorem [7]. InAs and GaAs crystals belong to 

point group symmetry of 43m cubic system (sphalerite-type structure). Also consider that the pieces of 

QD atomic planes formed one over another from the interface will be a square, their orientation is 

(001) and the next size is smaller than the previous – see figure 1. If each upper QD atomic plane is 
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shorter than the previous one from both edges (as is when atoms in planes are strictly one above the 

other), in this case it should be realized the condition l na  where n  – pairwise, a  – InAs lattice 

period and then we receive 2h l  where h  – the height of the pyramid l  – the length of the base of 

the pyramid. The sides of the base are oriented along the crystallographic axes [010] and in 2x l   

and 2y l   [100]. The sides of the pyramid has the orientation (010). The substrate is represented as 

the parallelepiped of sizes , ,x y zL L L h . The beginning of the coordinate system and its axis were 

chosen due to figure 1.  

 
Figure 1. Schematic representation of the piece of substrate (a parallelepiped) and quantum dots (a 

pyramid) for the system InAs/GaAs 

 

Considering the elastic properties of the system, we will not take its full account of atomic 

structure, despite the fact that QD as well as substrate contains thousands of atoms. QD for instance 

shown at figure 1, at 20n   contains 1 771 atoms [8]. This assumption can consider the system as a 

complete environment. We also believe that as a zero approximation for the deformation description in 

the system can be applied the linear theory of elasticity. 

Within these assumptions the stresses are satisfied with the Lame equation: 

    0
ij

j

p

x





      (1) 

where ijp  – (mechanical stress tensor for anisotropic linear environment is given by Hooke's law: 

    ij ij klklp C u ,     (2) 

where ijklC  – elastic constants tensor of environment, strain tensor is defined as 2 kl l k k lu u u   , 

deformation vector x x y y z zu u e u e u e  
   

, and 
k  is partial to coordinate 

kx . 

GaAs and InAs semiconductor crystals have the same symmetry point group so their elasticity 

tensors in matrix representation has the same form [9]: 
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   (3) 

and their value and periods of crystalline structure for GaAs and InAs are shown in Table 1 taken from 

[9]. 
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Table 1. Modules of elastic constants and lattice period 

 InAs GaAs  

11C (Pa) 108,34 10  111,19 10  

12C (Pa) 104,54 10  105,34 10  

44C (Pa) 103,95 10  105,96 10  

a (nm) 0.605886 0.565321 

 

Data shown shows GaAs period is 7% at the InAs period still the modulus of elasticity is about 15-

33% higher. This means that at one and the same deformation tensor 
klu  on both sides of the interface 

the QD-substrate in the substrate system there can be more mechanical loads. Similarly, under the 

same mechanical loads ijp  on both sides of the interface in the QD material there can appear larger 

relative deformation. From a physical point of view, on the both sides of the interface of deformation 

and mechanical stresses should be continuous. Therefore, detailed answer to the issue concerning 

deformations and stresses in the system should be due to the equations (1,2) with clear view of the 

tensor ijklC  due (3) and the values of elasticity coefficients due Table 1. 

2.2. Mathematical model 

2.2.1.Equation. For isotropic elastic environment the metric representation of tensor has the form 

[10]: 

   

2 0 0 0

2 0 0 0

2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

isotr

ijklC

   

   

   







 
 

 
 

  
 
 
  
 

,  (4) 

where   and   – Lame parameters while Hooke’s law is : 

    2ij ij ijp divu u  


.    (5) 

The structure of the matrix (3) and (4) is the same that is why for assessing of elastic constants 

tensor deviations for GaAs and InAs from tensor for isotropic environment we will choose the 

following value: 

    12 44 11

11

C C C

C


 
 ,     

which is zero for isotropic environment. Due to Table 1 it is followed that for InAs 0.02  , and for 

GaAs 0.05  . These values are somewhat smaller than the non-complementarity lattices and 

significantly less than the relative deviation of the elastic modules of its crystals. 

So we make the third step: the deformations in QD-substrate we will describe with the equations of 

elasticity theory for two isotropic environments. Then the equation (1, 2) takes the form of: 

      0divu u      
  

,    (6) 

where Lame parameters are expressed through the matrix coefficients of elastic constants as 
12C  , 

44C   on the both parts of the QD-substrate system and its value can be found in the Table 1.  

2.2.2. Boundary conditions. As Lame parameters in the equation (6) are piecewise continuous, and 

their solutions describe continuous deformations than the terms of their will build according to the fact 

that in a perfect defect-free quantum dot electrons move in a continuous crystalline potential. It is 

necessary that GaAs and InAs atomic planes continuously without spaces pass one another. This 
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condition is met if the atomic planes of InAs and GaAs crystal lattice are oriented in the same 

crystallographic direction and deformed without altering the symmetry. 

Figure 2 а) it is shown the fragment of QD-substrate geometric contact where the atomic planes 

[010] in QD and in the substrate (see the figure 1) are shown as the vertical lines. Here due to our 

choice are stitched only average atomic planes. On the figure 2 b) is shown the same fragment where 

formally and without gaps all atomic planes are stitched. The average planes of both environments 

haven’t been displaced and the displacement of other planes is increasing together with its distance 

from the axis of the system. Under such terms the mechanical stresses will increase around the 

interface. At some distance from the axis of the system they can reach such values when it is 

energetically favorable to pass the part of atomic plane near the interface. It can lead to structural 

defect – figure 2c). 

a)  b)  c)  
Figure 2. Scheme of atomic planes crosslinking [010] (vertical line) in QD (1, top) and in the 

substrate (2, below) while its contact in the plane 0z  : a) geometric contact; b) stitching starting 

from the central plane; c) stitching of atomic planes with the passing of one of it. 

 

Based on these considerations, we will construct a crosslinking conditions at the interface. The first 

follows from the z -component conditional continuity of vector deformation under normal passing 

through the interface’s plane along each atomic plane [010] with the same number 0, 1,n    that is 

counted from the average atomic plane in figure 2 a). A similar condition is fair along the atomic 

planes as well [100]. So    (1) (2)

1 1 2 2, , 0 , , 0z zu na ka z u na ka z     where 0, 1,k   . If the axis of 

coordinate system Oz  combines with an average atomic plane, axis ,Ox Oy  direct due to the figure 1, 

then for the  (1,2) , ,zu x y z  on the verge of a square QD and substrate obtain the following 

homogeneous boundary conditions: 

       (1) (2), ,0 , ,0z zu x y u x y  ,   (7) 

where the coordinates  1 1, ,x y l l   are within the QD foundations and multiplier 
2 1l l   in the 

arguments of deformations in substrate appears due to the fact that for the same number of atomic 

planes N  in QD and substrate their lateral dimensions 1,2 1,2l Na  will be different due to different 

lattice periods 
1 2a a ,due to the Table 1. 

The second and third conditions set continuity of nuclear axes of which are formed the  atomic 

planes in QD and in the substrate while the  normal passing through the interface along each of these 

axes. So we get the following correlation : 

   
   

   

(1) (2)

1 1 1 2 2 2

(1) (2)

1 1 1 2 2 2

, , 0 , , 0 ,

, , 0 , , 0 .

x x

y y

na u na ka z na u na ka z

ka u na ka z ka u na ka z

      

      
  

If  now to move to continuous coordinates we obtain the following inhomogeneous boundary 

conditions for transverse  vector components of deformation in a plane of interface: 
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   

   

(1) (2)

(1) (2)

, , 0 , , 0 ,

, , 0 , , 0 .

x x

y y

x u x y z x u x y z

y u x y z y u x y z

  

  

      

      
  (8) 

The outside sides of QD and the substrate will be assumed as free, so they just of homogeneous 

boundary conditions 

    0ij j S
p n  .     (9) 

We believe that to the QD-substrate system there is not attached the external forces. But the 

boundary condition (8) is not uniform and it causes the appearance of deformations and stresses in the 

system with no complementary QD and substrate. It emerged as a result of the conditions of continuity 

of atomic planes in the system. Provided 
1 2a a  we get 1   and then conditions (7,8) indicate that 

the system has the homocrossing. That the substrate and QD grown on it has the same chemical 

composition or similar symmetry and steel lattice. 

2.2.3. Solution of equations. In the QD-substrate system there is no internal sources for the 

emergence of deformations except the interface so one can introduce the vector displacement such as 

       , ,u x z x z


,    (10) 

where  ,x y  is arbitrary scalar function. Substitute (10) into the equation (6) and obtain the equation 

of the third order    2 , 0x z    


. Its solution as a single integral is easy to be found 

 ,x z C 


, a solution of this equation is the sum of the general solution of homogeneous equation 

and the particular solution of inhomogeneous equation. 

Since the boundary conditions for  -functions arising from (7-10) have the form of conditions for 

the second derivatives so heterogeneous solution will not give a contribution to the full solution of 

equations. So put constant 0C  . Get the Laplace equation  , 0x z  . 

Using the Lame’s equation (6) and above assumptions formulated the components of vector 

displacement can be found in both environments. 

     (1) (1) (1) (1) (1), sh sinx n n n n

n

u x z D k k z k x   ,    (11a) 

   (1) (1) (1) (1) (1), ch cosz n n n n

n

u x z D k k z k x  ,     (11b) 

       (2) (2) (2) (2) (2) (2) (2)

2, sh th ch sinx n n n n n n

n

u x z D k k z k H k z k x     ,  (11c) 

     (2) (2) (2) (2) (2) (2) (2)

2, ch th sh cosz n n n n n n

n

u x z D k k z k H k z k x    .  (11d) 

where  (1,2)

, ,x zu x z  – the components of vector displacement in both environments.  

Due to the Hooke’s law the components of mechanical stresses will be written through the 

deformation: 

    (1) (1) (1) (1) (1)

11 12,xx xx zzp x z C u C u  ,     (12a) 

    (1) (1) (1) (1) (1)

11 12,zz zz xxp x z C u C u  ,     (12b) 

    (2) (2) (2) (2) (2)

11 12,xx xx zzp x z C u C u  ,    (12c) 

    (2) (2) (2) (2) (2)

11 12,zz zz xxp x z C u C u  ,    (12d) 

where 
(1,2)

(1,2) x
xx

u
u

x





, 

(1,2)
(1,2) z
zz

u
u

z





 – the deformation of components. 

So we have got the deformations and stresses in the model of QD-substrate that allows us to assess 

of heir depending on the linear dimensions of quantum dots on the interface. 
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3. Results and discussion

3.1. Numerical calculations. The analytical estimates and calculations are supplemented with the 

numerical calculations in the work. We are considering the model of QD-substrate in which the lateral 

dimensions of substrate are much larger than the QD’s dimensions which has the triangular cross 

section. In the longitudinal direction the system is infinite so the two-dimensional case is considered – 

figure 3. 

Figure 3. Model quantum dots on a substrate Figure 4. z -component of mechanical stresses 

Equation (6) for the deformation together with the boundary conditions on the interface and the 

outside of the system (7-9) are solved numerically using FlexPDE. 

In figure 4 it is shown the z -component of mechanical stresses. We emphasize that within the tops 

of the foundations the mechanical tensions reach its maximum value. In turn, this will be the most 

likely QD area for the appearance of dislocations. 

4.Conclusion

1. It has been established at the ideal stitching of atomic QD planes and substrates the only source of

mechanical stresses and deformations is a mismatch of lattice period. 

2. Analytical estimates and numerical calculations show that the maximum stresses in the system

occur at the edges of QD-substrate interface, so there will be created conditions for the emergence of 

defects. 

3.The maximum tension of elastic modulus QD order scans occur when its transverse size up to

several tens of periods in the event that non-period lattice gratings is about 7% 
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