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Abstract. This paper studies the non-negativity and stability properties of the solutions of a 
newly proposed SEIADR model which incorporates asymptomatic and dead-infective 
subpopulations to those defining the standard SEIR model and, in parallel, it incorporates 
feedback vaccination and antiviral treatment controls. 

1. Introduction 
Relevant attention is being paid in the last two decades to the study of mathematical epidemic models, 
which are modelled by integro-differential equations and/ or difference equations. Those models 
describe the evolution of the various subpopulations considered as the disease under study progresses. 
Typically, the models have three essential subpopulations (namely, susceptible, infected and recovered 
by immunity) whose dynamics are mutually coupled. There are different degrees of complexity 
available in the statement of the models. The simpler models basically describe “susceptible” (S) and 
“infected” (I) subpopulations and are referred to as SI- models. A second degree of complexity adds a 
third one said to be the “recovered by immunity” subpopulation and those models are said to be SIR- 
models.  A further complexity degree splits the infected into two subpopulations (or compartments), 
namely, the so-called “infected” or “exposed” (E) (those infective having the disease but do not 
present yet external symptoms) and the “infectious” or “infective” (those infective having external 
symptoms). The generic acronym used for this last category of models is SEIR, being referred to as 
SEIR epidemic models. A general description of epidemic models and some mathematical analysis on 
them is given in some classical books. See, for instance, [1-2]. More sophisticated models have been 
described and analyzed in the literature. See, for instance, [4-8] and references therein. On the other 
hand, it turns out, due to medical experience, that there are individuals who are infected but do not 
have significant external symptoms, the so-called the “asymptomatic” (A) subpopulation. This occurs 
even in the common known influenza disease. If such an asymptomatic subpopulation is considered in 
the model then it turns out that the exposed have potential distinct transitions to the infective and to the 
asymptomatic so that a part of the exposed become asymptomatic after some time while others 
become infective. On the other hand, it is well-known that in the Ebola disease case, the abandoned 
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lying dead corpses are infective [3, 4] what causes serious sanitary problems in third world tropical 
countries with low or scarce sanitary technical means when Ebola disease spreads thoroughly specially 
when it is transmitted from scarcely populated rural areas to high populated urban ones.  In particular, 
it has been pointed out in some background literature that the simultaneous presence of asymptomatic 
infective population with dead-infective corpses is compatible in the Ebola disease propagation. The 
dead lying corpses can be considered in the model as a new infective subpopulation “D”. 
 
2. The model and its controlling actions 
The proposed SEIADR model is the following: 
 
              tVtRtStDtAtIbbtS DA  21
                                                                         

              tStDtAtItEbtE DA   2
                                                                                    

        tEptItbtI   02
                                                                                                        

         tEptAbtA  102                                                                                                            

                   ImpDt iD i
tttDttItAtIbtDtD  2

                                                              

                tVtIttAtItRbtR   02
                                                                                    

;  0Rt with initial conditions satisfying              0000000 R,D,A,I,E,Smin , where:  

 t  is the Dirac distribution,        


 
0

:0 RR t tImpDtDtDtImpD  , with 

   0:00   tt RRR , is the total set of impulsive (“culling”) time instants where actions or 

removal of infective corpses are performed, (the notation for  tf  is simplified to  tf ) , and  

   tImpDtImpD   : ,  

      tImpDtImpDtImpD  :  if ImpDt , and  

       ttImpDtImpDtImpD   :  if ImpDt  
 
and the (nonnegative) parameters and controls are the following: 

1b is the recruitment rate, 

2b  is the natural average death rate, 

DA ,,   are the various disease transmission coefficients to the susceptible from the respective 
infective, asymptomatic and infective corpses subpopulations, 
  is a parameter such that /1  is the average duration of the immunity period reflecting a transition 
from the recovered to the susceptible, 
  is the transition rate from the exposed to all (i.e. both symptomatic and asymptomatic) infectious,  

  is the average extra mortality associated with the symptomatic infectious subpopulation, 

0  is the natural immune response rate for the whole infectious subpopulation (i.e. IA ), 
respectively,  
p  is the fraction of the exposed, which become standard infectious, 

p1  is the fraction of the exposed which become asymptomatic infectious, 

/1  is the average period of infectiousness after death, 
 tV  and  t  are, respectively, the vaccination and antiviral treatment controls and    iiD tDt is the 

impulsive action of removal of corpses (or “culling”) for all ImpDti   with    10,tD  ,    10 ,tD   

if ImpDt , being the fraction of corpses removal. The controls can be of different types including 
constant and feedback actions. 
The proposed time-varying feedback vaccination and antiviral treatment laws, eventually including 
feedback impulses on the susceptible and symptomatic infective subpopulations, are the following: 
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            


ImpSt iVV

i

tttSttStKVtV 0                                                                             

              IImpt ii
tttIttItKt  0                                                                               

 0; Rt , where 00 V , 00  ,   10, 0
0 ,,PCKKV  R  and ImpS and IImp are the sets of 

impulsive time instants for the vaccination action on the susceptible and antiviral action on the 
symptomatic infective,    10 ,tV   and    10 ,t  ;  0Rt  give the fractions of vaccinated 

susceptible or antiviral infective treated subpopulations. 
 
3. Some model properties 
The proposed SEIADR model has the following properties which have been rigorously proved but the 
proofs are omitted by space reasons: 
 
Property 1 (existence and uniqueness of the solution). The solutions of the SEIADR model exist 
and are uniquely defined for any given initial conditions and any given vaccination and antiviral 
controls and can be expressed with explicit formulas. 
 
Property 2 (positivity of the solution). Assume that  10 0 b,V   and  10:, 0V ,D R . Then, the 
SEIADR model is “positive” in the sense that its trajectory solution is nonnegative for all time under 
non-negative initial conditions: 
 

                            0;00000000 RttD,tR,tA,tI,tE,tSminD,R,A,I,E,Smin  . 
 
This property allows a potential validity of the model for its application to real epidemic disease 
spreads on populations in both presence and absence of eventually mixed vaccination-antiviral- 
corpses culling controls. The proof is organized by using contradiction arguments to some 
subpopulation value being the first one to reach the zero value at some nonzero time instant. It follows 
due to the chained coupling dynamics in-between sub-populations that this supposed zero value should 
have been reached at a former time instant. 
 
Properties 3 (uniform boundedness of the solution): 
 
(i)   /btIsuplim

t
1


 and   


tIsup

t 0R
,  

(ii)   tN ;  0Rt , 

(iii)             










 
tDsup,tRsup,tAsup,tIsuptEsup,tSsupmax

tttttt 000000 RRRRRR
. 

where  tN  is the total population obtained by summing up the values of all the subpopulations at each 
time instant. The proof is made in two parts: a) It is proved that the whole subpopulation is bounded 
from its differential time equation      tIbtNbtN  12

 ;  0Rt , b) This above property together 
with the non-negativity of all the subpopulations for all time leads to the boundedness of all of those 
subpopulations for all time.   
                               
Properties 4 (existence and stability of the unique disease-free equilibrium periodic solution or 
equilibrium point): Assume that 

1)    ,,minb,minK*
V 02  , 
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2) the initial conditions of (1)-(6) to be non-negative,  10 0 b,V  ,   maxiiimin TttTT 10 ; 

DImpImpIImpSti  ,  

3)      *
DiD ,t   10  as    ImpDti ,      *

ViV ,t   10  as    ImpSti ,      *
i ,t    10  

as   *
Vii Ttt 1    IImpti and   *

VV KtK  as t .  
 
Then, the following properties hold: 
 

(i) There exists a unique disease- free equilibrium periodic solution if  10 ,*
V  in the set ImpS of 

impulsive vaccination of the susceptible subpopulation, which is independent on the antiviral control, 
and which is defined by: 
 

           T*
V

*
df

*
V

*
df

T*
V

*
df

*
df

*
df

*
df

*
df

*
V

*
df

*
V

*
df ,TR,,,,,,TSTR,D,A,I,E,TSTx   0000:  

 

;  *
VT,0 , where 

 

 
 

   
 

 *
V

*
v

*
V

i
ImpSnTt

*
V oTo

Kbb

bVbb
tSlimTS

*
Vi





 

















1

22

1012 ;  *
VT,0       

              

 
 

 
 

 *
V

*
v

*
V

*
V

i
ImpSnTt

*
V oTo

Kbb

bKVb
tRlimTR

*
Vi




 
















1

22

102 ;  *
VT,0  

   

      *
V

*
V

*
V TSTS 1    ,           *

V
*
V

*
V TRTR 1  

 

; ImpSti   with an associated limit total population      tNlim
b

b
RSN

t

*
df

*
df

*
df




2

1 ; 

 *
VT,0  and controls 0 *

df , and   

 

         *
V

*
V

*
df

*
V

*
V

*
df

*
V

*
V

*
df

*
V

n
TTSTSKVTVnTVlim  


 0     

 

;  *
VT,0  where  .   is the Dirac distribution.   If 0*

V   or the impulsive vaccination ends in 
finite time then the periodic oscillation becomes a disease- free equilibrium point.  
                                                                  
 
(ii) Assume that the extended disease transmission coefficient  DA ,,max    is small enough to 

satisfy    ,,,Kminb,min
S

*
V*

df
02

1
 . Then, the linearized trajectory solution about the 

disease- free equilibrium point is locally asymptotically stable. 

If    ,,,Kminb,min
S

*
V*

df
02

1
  then the linearized trajectory solution about the disease- 

free equilibrium point is locally unstable. 
 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012117 doi:10.1088/1742-6596/738/1/012117

4



 
 
 
 
 
 

The main message of Properties 4 is the following: “If the extended disease transmission rate 
 DA ,,max    (typically    in practice) is small enough then the disease- free equilibrium 

point is globally asymptotically stable. As a result, the whole nonlinear model about such an 
equilibrium is also locally asymptotically stable”. Note that under impulsive controls there is a jump 
from the left to the right in the values of the equilibrium periodic regime  if the control impulses do not 
end after a finite time interval. 
 
Property 5 (reproduction-like number): It is concluded from Property 4 (ii) that we can define 

  



,,,Kminb,min

S
R

*
V

*
df

df

02 
 as a disease- free reproduction-like number. If 1dfR , or 

equivalently, if the infective disease transmission coefficient is small enough such that 

   ,,,Kminb,min
S

*
V*

df
02

1



, then the disease does not spread for small deviations from the 

disease-free equilibrium. If 1dfR , equivalently, if    ,,,Kminb,min
S

*
V*

df
02

1
 then the 

equilibrium oscillation is locally asymptotically unstable. 
 
Properties 6 (existence and uniqueness of the endemic equilibrium oscillation/point): (i) If the 
given assumptions for Properties 4 hold, then there is no endemic equilibrium point or limit periodic 
oscillation: 
 
 

 T*
end

*
end

*
end

*
end

*
end

*
end

*
end R,D,A,I,E,Sx :  

 

or equilibrium periodic solution , where 0*
endE , provided that     DA ,,min  for some 

existing some  R . As a result, if    












 m

*
V*

df

,,,,Kminb,min
S

min  02
1

 for some 

   Rm  then there only exists the disease-free equilibrium periodic solution or point in the 
particular of asymptotic removal of vaccination and antiviral impulsive controls, which is globally 
asymptotically stable. 
 
(ii) Assume that         0 tttKtK VV    ;  0Rt . Then, the endemic equilibrium point, if it 

exists, is unique. 
 
The endemic equilibrium periodic solution or endemic equilibrium point I in the case of asymptotic 

impulsive - free case) is characterized bi its exposed population to be nonzero, i.e. 0*
endE , what 

causes the asymptomatic and symptomatic infective endemic populations to be nonzero.  Note that the 
endemic equilibrium periodic solutions or points make the disease to be permanent in the sense that 
the infective population cannot be asymptotically removed contrarily to the disease- free equilibrium 
points where the infection is asymptotically removed. This result establishes is that for small enough 
coefficient transmission rates only the disease- free equilibrium is relevant since the endemic one does 
not exist. 
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4. Example 
It is now presented a set of numerical simulation work imnplemented in Matlab. The parameters of the 

model are obtained from real data from a study of Ebola disease [9]: 
The recruitment rate and the natural average death rate are 1b = 2b =1/(70x365) days-1 so that the total 
population is normalized to unity while the disease transmission coefficients are 
  0.16,A  0.05,D  0.5 respectively. The average duration of the immunity period reflecting a 

transition from the recovered to the susceptible is determined by /1 =1000 days,  =1/15.8 days-1, 

 =1/13.3 days-1, 0 =1/12 days-1, p =0.9, the average duration of infection /1 =20 days and  tV  and 

 t  are, respectively, constant values  V=0.2b1 and  =0.02.  
 
First, a study is concerned with initial conditions S(0)= SDFE, R(0)=RDFE, A(0)=E(0)=D(0)=0 and 
I(0)=0.01 without culling, or impulsive removal of the infectious diseases at regular times (fig.1). In 
Figure 1, it can be seen where the dynamic of the subpopulations is seen to evolve into a endemic 
equilibrium point, and the disease remains endemic. In Fig.2 the culling of a 95% of the infectious 

 
Figure 2. A dynamic with regular culling of 95% of D(t) subpopulation each 7 days  

Figure 1. Endemic equilibrium reached for a dynamic without culling 
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bodies performed regularly each week. In Figure 2 it can be seen how the values related to the sick 
subpopulations decrease exponentially, as the susceptible and the recovered subpopulation reach the 
disease-free equilibrium. 
 
5. Concluding remarks 
In this paper, the properties of a new proposed epidemic model which is referred to as an SEIADR 
epidemic model have been described. This model incorporates the asymptomatic infective and dead- 
infective populations and three class of optional controls (vaccination on the susceptible, antiviral 
treatment on the symptomatic infective- both of them can contain optional constant and feedback 
regular and impulsive actions- plus a culling action, which is impulsive by nature, on the lying 
effective corpses. The positivity and stability properties of the solution as well as the existence of the 
unique disease-free equilibrium point and the existence, non-existence and uniqueness (if it exists) of 
the endemic equilibrium point are investigated. The proposed model could be useful to deal with the 
propagation of the Ebola disease where lying un-recovered dead corpses are known to be also highly 
infective in urban areas with high- population density. 
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