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Abstract. The problem of probability density function estimation for a random process is one 

of the most common in practice. There are several methods to solve this problem. Presented 

laboratory work uses methods of the mathematical statistics to detect patterns in the realization 

of random process. On the basis of ergodic theory, we construct algorithm for estimating 

univariate probability density distribution function for a random process. Correlational analysis 

of realizations is applied to estimate the necessary size of the sample and the time of 

observation. Hypothesis testing for two probability distributions (normal and Cauchy) is used 

on the experimental data, using χ2 criterion. To facilitate understanding and clarity of the 

problem solved, we use ELVIS II platform and LabVIEW software package that allows us to 

make the necessary calculations, display results of the experiment and, most importantly, to 

control the experiment. At the same time students are introduced to a LabVIEW software 

package and its capabilities. 

1.  Introduction 

Probability density function (PDF) estimation is one of the major concern in areas such as signal 

detection and recognition, machine learning, neural networks, digital signal processing and computer 

vision. On the one hand, it offers a flexible way to investigate the properties of a given data set and 

provides a solid basis for efficient data mining tools. On the other hand, it is crucial in unsupervised 

learning tasks and Bayesian inference and classification [1].  

Probability density estimation for random variables and stochastic processes is one of the key 

sections in any course of statistics and statistical physics, in particular. Recently, many mathematical 

tools provide special libraries for the empirical evaluation of probability density function in different 

ways. But often, the use of ready-made functions does not allow students to fully understand the 

essence of the matter. The most effective method of development of educational material for this 

section is to perform laboratory practicum, when students independently perform the measurement of 

stochastic processes dynamics and then estimate various statistical parameters of these processes. 

The National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) is an 

educational design and prototyping platform based on NI LabVIEW. The NI ELVIS teaching platform 

takes students from discovering engineering theory to practical hands-on experience with industry 

relevant technology and can be used in laboratory practicum of statistical radiophysics [2].  

In this paper, we propose an example of a laboratory practicum for a probability density function 

estimation using the ELVIS II platform capabilities platform and LabVIEW software package. This 

laboratory practicum is successfully used during statistical radiophysics course at the Kazan Federal 

University for many years. 
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2.  PDF function estimation for ergodic random processes 

Below we describe theoretical backgrounds for the theory of ergodic stochastic processes and methods 

of probability density function estimations.  

According to the ergodic theorem, mean and correlation function of the stationary process ξ(t) can 

be calculated by averaging over time the values of a single realization of v(t) for a continuous random 

process or a single realization v(n) for a random sequence ξ(n). 

A sufficient condition for the applicability of the ergodic theorem is the lack of correlation between 

the two values a stationary random process (in broad sense) divided by an infinite length of time, i.e., 

 
1

lim 0
T

R
T




 , where R(τ) is autocorrelation function of the process ξ(t). Another sufficient condition 

for the applicability of the ergodic theorem is the Slutsky equation [3]: 
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where T is the time of observation for the random process. 

For ergodic process averaging value is equal to 
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where N is the number of elements in the observed series. Practically, number of the elements N in the 

observed sequence is limited. 

Proposed method is based on the measurements of the time of the realization v(t) for an ergodic 

stochastic process ξ(t) between two fixed levels vi and vi + ∆v over a sufficiently large time interval of 

observation T (figure 1b). 

Let us estimate the probability density function of noise with sufficiently large T. First of all, we 

write a new random process η(t) (figure 1), depending on ξ(t), with values: 
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Mathematical expectation of the process η(t) in an arbitrary moment in time: 

    [ ] ( )   i iM t P v t v v      . (4) 

For sufficiently small ∆v, ignoring the change in the probability density function w(v) in the 

interval (vi, vi +∆v), we have M[η(t)] ≈ w(v)∆v. The process η(t) is also ergodic. 

Mean value for the process η(t): 
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where y(t) - realization of the random process, η(t) - pulses with unit amplitude and a random duration 

of τij, τij – time spent in the interval (vi, vi +∆v) for process ξ(t), n – number of intervals of random 

length, when vi < ξ(t) ≤ vi+∆v for an observation time T. 

Values of τij and n are random and depend on the one-dimensional density w(v). Then suppose that 

the measurement time T so great that we can write: 
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Using the ergodic property of the process η(t): 
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Time of observation T, total duration of the pulses of unit amplitude 
1

n

ij

j




  voltage (vi ,vi+∆v) can 

registered using different devices. Thus, it is possible to experimentally estimate one-dimensional 

probability density function of the noise belonging to the interval (vi, vi + ∆v) and replace the exact 

density distribution w(vi) with its estimation  ˆ
iw v  in equation (7). Each level of quantization vi 

corresponds estimation  ˆ
iw v , calculated according to the equation: 
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 . (8) 

The experimental estimations  ˆ
iw v  can be used to construct a histogram of the probability density 

function (figure 1a). 

 

 

For experimental evaluation of the density function w(vi) we must justify the choice of the 

observation time T (or the number of counts N during the observation T), the number of quantization 

levels of the process ξ(t) and the size of the quantization interval ∆v. 

Statistical hypothesis testing of distribution law requires independent sampling in time. If the 

observations are dependent, then one-dimensional empirical distribution function  ˆ
iw v  will be 

distorted.  

It is impossible to specify the exact value ∆t for the test process used in this laboratory practicum. 

We need to select the time ∆t from the condition of uncorrelated values of noise, separated by an 

interval of time ∆t, though it is impossible for certain to state that these two values will be 

independent. However, the theory has proven that if the distribution of random variables is normal, 

then uncorrelated random variables are independent. 

3.  Random process modelling and PDF function estimation using ELVIS II platform and 

LabVIEW software package 

In this laboratory practicum use a personal computer, NI ELVIS II laboratory platform and a test 

breadboard. For numerical analysis of the probability density function we use virtual apparatus, 

created with a universal programming system LabVIEW. The main view of this program is shown in 

the figure 2. 

 

 

 

Figure 1a. Original stochastic process  ξ(t) and  

binary random process η(t). 

 Figure 1b. Empirical estimation of a 

probability density function 
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Figure 2. The main view of laboratory practicum for the PDF function estimation (in 

LabVIEW software package). 

 

We use the noise generation in the LabVIEW environment and we output the noise from digital to 

analog devices (pin A0 0 connector) to the first channel oscilloscope CH 0 (Channel 0 SCOPE). The 

virtual apparatus has the following tasks: 

• Generate a random process (“Noise” on the figure 2); 

• Show the covariance function of the generated data (“Covariance function” on the figure 2); 

• Show the power spectral density (“PSD” on the figure 2); 

• Visualizes a data sample. 

• Display a histogram of the distribution density for the noise values. 

At the beginning of this work we need to calculate the observation time. Let’s describe basics of 

this procedure. 

If the generated set of noisy data consists of N samples from the general population with the 

distribution w(v), then the difference between the probability density ˆ
ip  for vi interval and theoretical 

probability pi should be smaller than ε and would be determined only by random errors. The 

probability of such deviation is written as: 

  ˆ
i iP p p     , (9) 

where ε is infinitesimal value. 

According to the law of large numbers [2] the distribution of random variable ˆ
i ip p    when 

N→∞ corresponds to the normal distribution law with a mean value E[Ψ] = 0 and variance D[Ψ] = pi 

(1 − pi)/N. 

The probability of the case, that a random variable ˆ
i ip p    is in range of (−ε, ε), is equal to 
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Probability integral (10) is tabulated [4]. With known confidence level (1-α) and using tabulated 

values of the normal distribution or by numerical integration, we can find the value of zα. Using zα, we 

get 
2 2

2 2

(1 )i iz p p z
N  

 


  . 

The value of ε is usually set based on practical needs.  

After estimation of the number observation points N, we generate the random set of the white noise 

data. While generating we need to control the covariance function of the noise and its probability 

distribution function. It is needed to be sure that our measurements are not correlated therefore 

independent. After that, we can see the histogram of probability distribution function. If everything is 

good, we export generated values for the father analysis. 

4.  Testing hypothesis of distribution law 

Experimentally found PDF function must be identified with one of the distribution law. We can make 

a hypothesis H0 of the type of distribution law and the proposed distribution of w(v) can be either true 

and false. We introduce a metrics D of the difference between the empirical distribution function and 

the hypothetical distribution. 

Because of the empirical distribution function w(v) corresponds to random variables then the metrics 

D is a random variable too. In this laboratory work we chosen a measure of deviation of the 

hypothetical distribution from the empirical as: 
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where h is the number of quantization intervals for a noise, pi - the hypothetical probability of the 

interval vi, mi – empirical mean value in the interval vi. 

From the literature [5] it is known that the measure of the metrics D = χ2 has χ2 distribution with h − 

1 degrees of freedom, where h is the number of quantization intervals for a noise. If we have number L 

of parameters of distribution function w(v|H0), then the number of degrees of freedom of χ2 distribution 

is reduced by L. Therefore, χ2 distribution degrees of freedom will be equal to k = h − L − 1. 

If the confidence level q is specified, the boundary of the critical region χ2
q is determined from the 

equation P(χ2 > χ2
q|H0) = q, where H0 is hypothesis that the sample belongs to the expected distribution 

law w(v). The function P(χ2 > χ2
q|H0) is tabulated. [5] 

Practice has shown that for the χ2 test it is enough for the number of degrees of freedom to be in the 

range of (11−20). If during processing of the experiment results it occurs that mi < 10, you need to 

combine intervals and add up mi in corresponding united intervals. The resulting probability is equal to 

the sum of probabilities of united intervals. The number of degrees of freedom for χ2 distribution is 

reduced by the number of intervals j merged and will be equal to h = h − L − j − 1. 

Table of χ2 distribution [1] makes it possible to determine the critical divergence (threshold)  with 

the chosen permissible error probability q with accepted hypothesis H0 about the law of distribution. 

The procedure for the hypothesis testing is then reduced to the calculation of χ2 and checking the 

following inequalities: if χ2 > χ2
q, H0 hypothesis is rejected, if χ2 ≤ χ2

q, H0 hypothesis is not rejected. 

In the laboratory practicum we propose to check hypotheses about the normal distribution law and 

the Cauchy distribution. During hypothesis testing, students show empirical PDF function and 

compare it with hypothetical distributions on the graphics. After that they make a conclusion about 

hypothesis testing. 

5.  Conclusion 

In this paper we proposed an example of laboratory practicum for the probability density function 

estimation and a random processes analysis. On the basis of ergodic theory, we realized the algorithm 

for estimating of probability distribution function for a random process. Use of ELVIS II platform and 

LabVIEW software package provides wide possibilities for students. They make necessary 
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calculations, display results of the experiment and, most importantly, to control the experiment. At the 

same time students are introduced to a LabVIEW software package and its capabilities. Proposed 

laboratory practicum has been successfully used for many years at Kazan Federal University for 

statistical radiopysics studies. 
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