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Abstract. In this work, we propose a non-linear differential equation of Riccati-type, where the 

standard partition function Z(T) is taken as its particular solution leading to their generalization 

Zg(T); from there, other related statistical thermodynamic functions are generalized. As an 

useful application of our proposal, other thermodynamic functions, namely, the internal energy, 

heat capacity, Helmholtz free energy and entropy, associated to the model of the ideal 

monatomic gas in D-dimensions are generalized. According to our results, thermodynamic 

properties derived from the standard partition functions by means of ordinary statistical 

mechanics are incomplete. In fact, although asymptotically with the increasing of temperature 

the generalized statistical thermodynamic functions reduce to the standard ones, these contain 

an extra term which is dominant at very low temperature indicating that standard findings 

should be corrected.                                                                                                

PACS: 05.30.-d, 03.65.Fd, 51.30.+i. 

Keywords: Thermodynamic functions, Riccati equation. 

1.  Introduction 

In statistical mechanics, almost all thermodynamic properties of a system can be obtained from the 

standard partition function Z(T) which is related with the standard internal energy of the system U(T) 

through the derivative of lnZ(T) [1]. This means that the existence of a partition function guarantees 

the knowledge of the thermodynamic properties of system [2]. This statement seems to be equivalent 

to that of quantum mechanics about solvable potentials, which establish that a potential is exactly 

solvable on condition of having an associated Witten superpotential [3,4]. In that case, the choice of 

the Witten superpotential as a particular solution of the involved Riccati equation leads us to identify 

the potential under study [5], to generalize the former potential as well as to find their isospectral 

partners [6]. Thus, because we are interested on the generalization of thermodynamic partition 

functions, we propose to follow a similar treatment to the one outlined above [7]. That is, the aim of 

this work is to propose a nonlinear differential equation of Riccati type where the thermodynamic 

variables U(T) and Z(T) are involved in such a way that all other thermodynamic properties of a 

system, that come from Z(T) or U(T), can be generalized. In next section, the equations that generalize 

the partition function and the internal energy are presented along with the generalized equations that 

correspond to the entropy, specific heat and Helmholtz free energy. As an useful application of the 

proposed Riccati-type equation for statistical thermodynamics, in section III we consider the 
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generalized statistical thermodynamic properties of the ideal monatomic gas in one, two and three 

dimensions. Although this statistical model is always considered in every modern textbook on 

statistical mechanics, the theory of ideal quantum gases is far from being a closed field for research 

[8,9]. Moreover, the proposed equations can be directly used to generalize other statistical models as 

well as to find new partition functions that could be useful in the treatment of some relevant 

thermodynamic applications. 

2.  Partition function 

In a thermodynamic system at equilibrium, the canonical partition function Z(T), which is given in terms 

of thermodynamic state variables, plays an important role in statistical physics due that all the 

thermodynamic functions associated to a statistical system, such as entropy, internal energy, free energy, 

heat capacity and others are obtained in terms of Z(T) and its derivatives [10]. Consequently, the Z(T) 

along with the particular properties of each system leads to the so-called equation of state that completely 

characterizes the system under study. The partition function for a classical discrete system is given by the 

equation 

                                                                       𝑍(𝑇) = ∑ 𝑒−
𝐸𝑖
𝑘𝑇𝑖                                                       (1) 

 

where 𝐸𝑖 is the energy of the system in a state 𝑖 and 𝑘 is the Boltzman constant. Thus defined, the 

partition function has a probabilistic sense because the factor 𝑒− 
𝐸𝑖
𝑘𝑇 is interpreted as the probability that 

the system is in a state i with energy 𝐸𝑖, i.e. 

                                                                   𝑃𝑖 = 𝐶 𝑒−
𝐸𝑖
𝑘𝑇 ,                                                                   (2) 

 

where C is a constant of proportionality. In the case we are studying, the partition function Z(T) plays the 

role of the normalization constant for the probability distribution in question Eq. (2). Indeed, if we apply 

the fact that the sum of all probabilities is the unity,   

 

                                                                  ∑ 𝑃𝑖 = 1,𝑖                                                                          (3) 

then 

                         ∑ 𝑃𝑖 = ∑ 𝐶𝑒−
𝐸𝑖
𝑘𝑇 = 𝐶 ∑ 𝑒−

𝐸𝑖
𝑘𝑇 =  1 𝑖  𝑖   𝑖 ⟹    𝐶 =

1

∑ 𝑒
−

𝐸𝑖
𝑘𝑇 𝑖

=
1

𝑍(𝑇)
                              (4) 

such that the normalized probability distribution is 

                                                      𝑃𝑖 =   
 𝑒

−
𝐸𝑖
𝑘𝑇

∑ 𝑒
−

𝐸𝑖
𝑘𝑇𝑖

=  
1

𝑍(𝑇)
  𝑒−

𝐸𝑖
𝑘𝑇                                                           (5) 

 

With this probability distribution, it is possible to calculate average values of various amounts of interest, 

such of the ones that we are going to show next and which will be useful for the purpose of this paper.  
   

2.1.  Calculations of average values for the energy. 

As mentioned earlier, starting from the partition function and its derivatives, it is possible to deduce the 

thermodynamic functions of statistical mechanics. Indeed, based on the probability distribution of Eq. 

(5), the average value of energy 〈𝐸〉 = 𝐸̅ = 𝑈 is given by 

 

           𝑈 = ∑ 𝑃𝑖𝐸𝑖 = ∑  
 𝐸𝑖 𝑒

−
𝐸𝑖
𝑘𝑇

𝑍(𝑇)
=

1

𝑍
∑ 𝑘𝑇2  𝑒

−
𝐸𝑖
𝑘𝑇

 𝑇
 𝑖𝑖 =

𝑘𝑇2

𝑍(𝑇)

 𝑍(𝑇)

 𝑇
 𝑖 = 𝑘𝑇2  ln 𝑍(𝑇)

 𝑇
 .                          (6) 

 

Similarly to the above equation, 〈𝐸2〉 = 𝐸2̅̅̅̅ , which is different of 〈𝐸〉2 =  (𝐸̅)2 = 𝑈2, becomes as   
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                                            〈𝐸2〉 = ∑ 𝑃𝑖𝐸𝑖
2  =

1

𝑍
∑  𝐸𝑖

2 𝑒−
𝐸𝑖
𝑘𝑇𝑖  .𝑖                                                          (7) 

 

However, by noticing that 

                                      
 2  𝑍(𝑇)

 𝑇2 
=  (

1

𝑘𝑇2)
2

 ∑  𝐸𝑖
2 𝑒−

𝐸𝑖
𝑘𝑇𝑖  −

2

𝑘𝑇3  𝐸𝑖  𝑒−
𝐸𝑖
𝑘𝑇 ,                                           (8) 

it can be rewritten as 

                              
 2  𝑍(𝑇)

 𝑇2 
=  (

1

𝑘𝑇2)
2

𝑍(𝑇) (
∑  𝐸𝑖

2 𝑒
−

𝐸𝑖
𝑘𝑇𝑖

𝑍(𝑇)
)    −

2 𝑍(𝑇)

𝑘𝑇3  (
 𝐸𝑖 𝑒

−
𝐸𝑖
𝑘𝑇

𝑍(𝑇)
 ) ,                              (9) 

 

the expectation value of the square energy given in Eq.(7) will be 

 

                                         〈𝐸2〉 = (𝑘𝑇2)2  (
 2  𝑍(𝑇)

 𝑇2 

𝑍(𝑇)
 ) + 2𝑘𝑇 〈𝐸〉.                                              (10) 

Also,  

                                 

 2  𝑍

 𝑇2 

𝑍
=

1

𝑍

𝜕

𝜕𝑇
(

𝑍

𝑘𝑇2  𝑘𝑇2  (
𝜕 𝑍

𝜕𝑇

𝑍
) ) =

1

𝑍

𝜕

𝜕𝑇
(

𝑍

𝑘𝑇2    〈𝐸〉 ),                                   (11)  

leads to 

                                (𝑘𝑇2)2  (
 2  𝑍(𝑇)

 𝑇2 

𝑍(𝑇)
 ) = 𝑘𝑇2  

𝜕 〈𝐸〉

𝜕𝑇
+ 〈𝐸〉2 − 2𝑘𝑇 〈𝐸〉.                                    (12) 

 

Finally, we want to point out that the combination of Eqs. (10) and (12) allow us the calculation of 

fluctuations or  dispersion of the energy (𝐸)2̅̅ ̅̅ ̅̅ ̅̅  , i.e.   

 

                              (𝐸)2̅̅ ̅̅ ̅̅ ̅̅ =  (𝐸 − 𝐸̅)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  𝐸2 − 2𝐸 𝐸̅ + 𝐸̅2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   =  〈𝐸2〉 − 〈𝐸〉2                         (13) 

from where 

                                                (𝐸)2̅̅ ̅̅ ̅̅ ̅̅ = 𝑘𝑇2  
𝜕 〈𝐸〉

𝜕𝑇
= 𝑘𝑇2  

𝜕 𝑈

𝜕𝑇
.                                                        (14) 

 

 

2.2.  The canonical partition function and the Riccati equation. 

As can be seen, Eq.(12) can be written as 

 

                        
1

𝑘𝑇2   
𝜕 𝑈

𝜕𝑇
−

2

𝑘𝑇3  𝑈 + (
 𝑈

𝑘𝑇2)
2

=
𝑍(𝑇)′′

𝑍(𝑇)
 ,   𝑤𝑖𝑡ℎ     𝑍(𝑇)′′ =

𝜕2 𝑍(𝑇)

𝜕𝑇2                               (15) 

 

which means 

                                                        
𝜕 

𝜕𝑇
(

 𝑈

𝑘𝑇2) + (
 𝑈

𝑘𝑇2)
2

=
 𝑍′′

𝑍
 .                                                         (16) 

 

At this point, it is interesting to notice that the definition of a new thermodynamic function  

                                                                     𝑅(𝑇) =
 𝑈(𝑇)

𝑘𝑇2                                                                 (17) 

 

indicates that Eq. (16) becomes a Riccati equation 

                                                               𝑅′(𝑇) + 𝑅2(𝑇) =
𝑍′′(𝑇)

𝑍(𝑇)
                                                     (18) 
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from where it is possible to generalize different statistical thermodynamic functions as will see next. 

 

3.  On the generalization of statistical thermodynamic functions 

Let us consider the Riccati relationship  

 

                                                         𝑦′(𝑥) + 𝑦2(𝑥) = 𝑓(𝑥),                                                     (19) 

 

if a particular solution 𝑦𝑝(𝑥) is known, then the general solution is given by [11]  

 

     𝑦𝑔(𝑥) = 𝑦𝑝(𝑥) +
𝑏

 𝑒2 ∫ 𝑦𝑝𝑑𝑥  (1+b ∫
𝑑𝑥

𝑒
2 ∫ 𝑦𝑝𝑑𝑥

)  

= 𝑦𝑝(𝑥) +
𝑑

𝑑𝑥
ln (1 + b ∫

𝑑𝑥

𝑒2 ∫ 𝑦𝑝𝑑𝑥
) .                  (20) 

 

where the index g indicates general or generalized. 

 

So, regarding with Eq.(18), by assuming  𝑦𝑝(𝑥) = 𝑅(𝑇) this means that  

 

                                           𝑅𝑔(𝑇) = 𝑅(𝑇) +
𝑏

 𝑒2 ∫ 𝑅(𝑇)𝑑𝑇(1+b ∫
𝑑𝑇

𝑒2 ∫ 𝑅(𝑇)𝑑𝑇
)  

.                                         (21) 

 

Moreover, due that according to Eq.(6)  𝑈 = 𝑘𝑇2  ln 𝑍(𝑇)

 𝑇
, or the equivalent 𝑅(𝑇) =

 𝑍′(𝑇)

𝑍(𝑇)
,  there exist 

also  𝑍𝑔(𝑇) such that 

                                               𝑍𝑔(𝑇) = 𝑍(𝑇) (1 + b ∫
𝑑𝑇

𝑍2(𝑇)
).                                                    (22) 

 

In fact Eq.(21) can be written as 

 

           𝑅𝑔(𝑇) =
 𝑍′(𝑇)

𝑍(𝑇)
+

𝑏

 𝑒2 ∫ 𝑅(𝑇)𝑑𝑇(1+b ∫
𝑑𝑇

𝑒2 ∫ 𝑅(𝑇)𝑑𝑇
)  

=
𝑑

𝑑𝑇
ln 𝑍(𝑇) +

𝑑

𝑑𝑇
ln (1 + b ∫

𝑑𝑇

𝑍2(𝑇)
)             

     

                           =
𝑑

𝑑𝑇
ln (𝑍(𝑇) (1 + b ∫

𝑑𝑇

𝑍2(𝑇)
)) =

𝑑

𝑑𝑇
ln(𝑍𝑔(𝑇)) ,                                           (23) 

that is to say  

                                                           𝑅𝑔(𝑇) =
 𝑍′𝑔(𝑇)

𝑍𝑔(𝑇)
 ,                                                               (24) 

 

leading to the generalization of Eq.(18) 

 

                                                  𝑅′𝑔(𝑇) + 𝑅𝑔
2(𝑇) =

 𝑍′′
𝑔(𝑇)

𝑍𝑔(𝑇)
 .                                                       (25) 

 

Consequently, this means that all the statistical thermodynamic functions associated with  𝑅𝑔(𝑇) can 

be straightforward generalized such as happen from Eq.(17) 

 

                                           𝑈𝑔(𝑇) = 𝑘𝑇2 𝑅𝑔(𝑇) = 𝑘𝑇2  
𝑑

𝑑𝑇
ln 𝑍𝑔(𝑇)                                             (26) 

 

that corresponds to the generalization of the internal energy of the system. In a similar way, other 

important statistical thermodynamic properties, related with the partition function, the internal energy 
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and their derivatives, can be generalized.  For example, the entropy 𝑆(𝑇), the Helmholtz free energy 

𝐹(𝑇) and the heat capacity C(T) are related with Z(T) and Zg(T) as follow 

 

                         𝑆(𝑇) = −
𝑑

𝑑𝑇
𝑍(𝑇)    ⤍    𝑆𝑔(𝑇) = 𝑘 ln  𝑍𝑔(𝑇) +

 𝑈𝑔(𝑇)

𝑇
 ,                                        (27) 

 

                             𝐹(𝑇) = −𝑘𝑇 ln 𝑍(𝑇)     ⤍     𝐹𝑔(𝑇) = −𝑘𝑇 ln 𝑍𝑔(𝑇)                                        (28) 

and 

               𝐶(𝑇) =
𝑑

𝑑𝑇
𝑈(𝑇) = 𝑇

𝑑

𝑑𝑇
𝑆(𝑇) = −𝑇

𝑑2

𝑑𝑇2 𝐹(𝑇)     ⤍       𝐶𝑔(𝑇) =
𝑑

𝑑𝑇
𝑈𝑔(𝑇).                    (29) 

 

In short, by using Eq.(22) the above generalized statistical thermodynamic functions are written as 

 

                                             𝑍𝑔(𝑇) = 𝑍(𝑇) + 𝑏𝑍(𝑇) ∫
𝑑𝑇

𝑍2(𝑇)
 ,                                                        (30) 

 

                                            𝑈𝑔(𝑇) = 𝑈(𝑇) + 𝑘𝑇2  
𝑑

𝑑𝑇
ln (1 + b ∫

𝑑𝑇

𝑍2(𝑇)
),                                       (31) 

 

                                           𝑆𝑔(𝑇) = 𝑆(𝑇) +
𝑑

𝑑𝑇
(𝑘𝑇 ln (1 + b ∫

𝑑𝑇

𝑍2(𝑇)
)) ,                                      (32) 

 

                                              𝐹𝑔(𝑇) = 𝐹(𝑇) − 𝑘𝑇 ln (1 + b ∫
𝑑𝑇

𝑍2(𝑇)
)                                              (33) 

and 

                                          𝐶𝑔(𝑇) = 𝐶(𝑇) + 𝑇
𝑑2

𝑑𝑇2  (𝑘𝑇 ln (1 + b ∫
𝑑𝑇

𝑍2(𝑇)
)).                                  (34) 

 

As can be appreciated, the generalized statistical thermodynamic functions contain, algebraically, the 

corresponding standard functions plus an additional term which depends on temperature.  

 

4.  Applications 

In this section, we will apply the above results to the system of an ideal gas with N particles confined 

in a container. In this case, the internal energy is given by  

 

                                                                𝑈(𝑇) =
𝐷𝑁

2
𝑘𝑇                                                                  (35) 

 

where 𝐷 indicates the degrees of freedom of particles such that 𝐷 = 1, 2, 3  corresponds to 1, 2 

and 3 dimensions respectively. Thus, using Eqs.(6) and (17), the standard partition function 

becomes 

                                                          𝑍(𝑇) = 𝑒∫ 𝑅(𝑇)𝑑𝑇 = (𝐴𝑇)
𝐷𝑁

2                                                   (36) 

 

where 𝐴 is a proper constant that leaves 𝑍(𝑇) dimensionless. Accordingly to Eq.(22), the generalized 

partition function is given by 

                                                         𝑍𝑔(𝑇) = 𝑍(𝑇) + 
(𝑍(𝑇))

2
𝐷𝑁

−1

𝐷𝑁−1
 .                                                  (37) 

 

In consequence, the generalized statistical thermodynamic functions for the model of ideal gas in D 

dimensions are 

                                              𝑍𝑔(𝑇) = (𝐴𝑇)
𝐷𝑁

2 + 
(𝐴𝑇)1−

𝐷𝑁
2

𝐷𝑁−1
                                                             (38) 
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                                             𝑈𝑔(𝑇) =
𝐷𝑁

2
𝑘𝑇 −

(𝐷𝑁−1)𝑘𝑇

(𝐷𝑁−1)(𝐴𝑇)𝐷𝑁−1+1
                                                   (39) 

 

               𝑆𝑔(𝑇) =
𝐷𝑁

2
𝑘 + 𝑘 ln[(𝐴𝑇)

𝐷𝑁

2 ]  + 𝑘 ln[1 +
(𝐴𝑇)−(𝐷𝑁−1)

(𝐷𝑁−1)
] −

(𝐷𝑁−1)𝑘

(𝐷𝑁−1)(𝐴𝑇)𝐷𝑁−1+1
                   (40) 

 

                                𝐹𝑔(𝑇) = −𝑘𝑇 ln[(𝐴𝑇)
𝐷𝑁

2 ]  − 𝑘𝑇 ln[1 +
(𝐴𝑇)−(𝐷𝑁−1)

(𝐷𝑁−1)
]                                       (41) 

 

and 

                                      𝐶𝑔(𝑇) =
𝐷𝑁

2
𝑘 + 𝑘

(𝐷𝑁−1)2(𝐷𝑁−2)(𝐴𝑇)𝐷𝑁−1−(𝐷𝑁−1)

((𝐷𝑁−1)(𝐴𝑇)𝐷𝑁−1+1)
2 .                                    (42) 

 

From these results, it becomes evident that all the above generalized statistical thermodynamic 

functions tend asymptotically to the corresponding standard ones for a temperature beyond of 

which the generalized partition function reach its minimum. Namely, from Eq. (38) the minimum 

value of 𝑍𝑔(𝑇) is obtained by solving the equation  𝑍′𝑔(𝑇) = 0  such that 

                        𝑍𝑔𝑀𝑖𝑛 = 𝑍𝑔(𝑇𝑀𝑖𝑛𝑍𝑔) =  (
𝐷𝑁−2

𝐷𝑁(𝐷𝑁−1)
)

𝐷𝑁

2(𝐷𝑁−1)
+

(
𝐷𝑁−2

𝐷𝑁(𝐷𝑁−1)
)

2−𝐷𝑁
2(𝐷𝑁−1)

𝐷𝑁−1
 ,                            (43) 

 

where 𝑇𝑀𝑖𝑛𝑍𝑔  is the temperature at which 𝑍𝑔(𝑇) reach its minimum given by 

                                                            𝑇𝑀𝑖𝑛𝑍𝑔 =
1

𝐴
(

𝐷𝑁−2

𝐷𝑁(𝐷𝑁−1)
)

1

3𝑁−1
 .                                                (44) 

                                 

Likewise, due that  𝑈𝑔 = 𝑘𝑇2𝑍′𝑔/𝑍𝑔 such that 𝑈𝑔(𝑇𝑅𝑜𝑜𝑡𝑈𝑔) = 0, it leads to 𝑇𝑅𝑜𝑜𝑡𝑈𝑔 = 𝑇𝑀𝑖𝑛𝑍𝑔 where 𝑇𝑅𝑜𝑜𝑡𝑈𝑔 is 

the temperature at which 𝑈𝑔 has a root, i.e. where 𝑈𝑔 is null. Also, in the interval (0 , 𝑇𝑅𝑜𝑜𝑡𝑈𝑔) 𝑈𝑔 < 0 , 

reaching in this range a minimum value 

  𝑈𝑔𝑀𝑖𝑛 =
𝑘

𝐴
 (√

𝐷𝑁(𝐷𝑁−2)+((𝐷𝑁−1)2+1)2

(𝐷𝑁(𝐷𝑁−1))2 −
(𝐷𝑁−1)2+1

𝐷𝑁(𝐷𝑁−1)
)

1

𝐷𝑁−1

(
𝐷𝑁

2
−

𝐷𝑁(𝐷𝑁−1)

√𝐷𝑁(𝐷𝑁−2)+((𝐷𝑁−1)2+1)2−(𝐷𝑁−1)(𝐷𝑁−2)
)     (45) 

 

at 𝑇𝑀𝑖𝑛𝑈𝑔  which is the temperature where 𝑈𝑔(𝑇) is minimal. That is 𝑈′𝑔(𝑇𝑀𝑖𝑛𝑈𝑔) = 0  leading to 

 

                          𝑇𝑀𝑖𝑛𝑈𝑔 = 𝐴−1  (√
𝐷𝑁(𝐷𝑁−2)+((𝐷𝑁−1)2+1)2

(𝐷𝑁(𝐷𝑁−1))2 −
(𝐷𝑁−1)2+1

𝐷𝑁(𝐷𝑁−1)
)

1

𝐷𝑁−1

.                              (46) 

 

Besides, due that according to Eq. (29) 𝐶𝑔(𝑇) = 𝑈′𝑔(𝑇), then 𝐶𝑔(𝑇𝑀𝑖𝑛𝑈𝑔) = 𝑈′𝑔(𝑇𝑀𝑖𝑛𝑈𝑔) = 0 this implies that 

𝑇𝑀𝑖𝑛𝑈𝑔 =  𝑇𝑅𝑜𝑜𝑡𝐶𝑔 which is the temperature at where 𝐶𝑔 is null.  

 

At this point, it is worth mentioning that by combining Eqs. (26) and (29) one has 

 

                                            𝐶𝑔(𝑇) =
𝑑

𝑑𝑇
𝑈𝑔(𝑇) =

𝑑

𝑑𝑇
(𝑘𝑇2  

𝑑

𝑑𝑇
ln 𝑍𝑔(𝑇)),                                       (47) 

 

that permits to select the interval of validity of our equations. Finally, the heat capacity has a maximal 

value given by  

                                              𝐶𝑔𝑀𝑎𝑥 = 𝐶𝑔(𝑇𝑀𝑎𝑥𝐶𝑔) =
𝐷𝑁

2
𝑘 + (

𝐷𝑁

2
− 1)

2
𝑘                                       (48) 
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 where 𝑇𝑀𝑎𝑥𝐶𝑔 can be obtained from Eq. (42) after solving 𝐶′𝑔(𝑇) = 0 as 

                                                        𝑇𝑀𝑎𝑥𝐶𝑔 = 𝐴−1  (
𝐷𝑁

(𝐷𝑁−1)(𝐷𝑁−2)
)

1
𝐷𝑁−1.                                            (49) 

 

In short, we want to notice that a similar study can be done directly from the proposed generalized 

partition or internal energy functions to other statistical thermodynamic properties different to those 

considered in this work as well as to other model systems [12]. 

 

5.  Concluding remarks 

Starting from the basic definitions of statistical mechanics, in this paper we propose a non-linear 

differential equation of Riccati-type involving the statistical thermodynamic functions of internal 

energy and partition function. To achieve this, it is used an R(T) function linking both the internal 

energy as the partition function through the logarithmic derivative R(T) = Z '/ Z. This same function is 

taken as a particular solution in order to find a general solution of the Riccati-type equation. So, this 

general solution leads to the generalization of the partition function Zg(T) and the internal energy 

Ug(T). From there, the thermodynamic properties associated with these functions are directly 

generalized; specifically we consider the generalization of entropy, Helmholtz free energy and heat 

capacity in the case of the ideal monatomic gas in D-dimensions. According to our results, the 

statistical thermodynamic properties derived from the standard partition functions by means of 

ordinary statistical mechanics are incomplete, therefore should be corrected with the generalized 

equations that contain an extra term which is dominant at very low temperature. Besides, our proposal 

is general and can be directly applied to other thermodynamic models. 
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