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Abstract. We propose a model for an active Brownian system that exhibits one-dimensional
directed motion. This system consists of two Brownian spherical particles that interact through
an elastic potential and have time-dependent radii. We suggest an algorithm by which the sizes
of the particles can be varied, such that the center of mass of the system is able to move at an
average constant speed in one direction. The dynamics of the system is studied theoretically
using a Langevin model, as well as from Brownian Dynamics simulations.

1. Introduction

Understanding how a microscopic physical system is able to perform directed motion when it
is immersed in an isotropic thermal bath, is a problem that has received considerable interest
through the last decades [1, 2]. This interest has been increased by the observations of the
mechanisms that allow molecular motors to perform specialized tasks in the cells of living
organisms [3]. It is now known that such molecular machines use the spontaneous fluctuations
occurring in their surroundings together with ratchet mechanisms, in order to break the spatial
symmetry of their dynamics [4]. The understanding of such mechanisms could lead in the future
to the fabrication of nanomachines aimed at functions such as targeted drug delivery, stirring
and pumping in microfluidic devices, and separation of biological macromolecules [5]. Due to
the significant impact that these applications would have, developing simplified models for the
Brownian motors that retain the basic physical phenomena and can be mathematically treated,
could be very helpful to understand the principles that govern their dynamics.

Directed Brownian motion can be achieved by employing a ratchet potential, i.e., a periodic
potential with no reflection symmetry that is able to produce a net current of particles from
unbiased thermal fluctuations [1]. In a more general context, a system is said to constitute
a Brownian motor when [2]: the spatio-temporal periodicity critically affects the rectification
mechanism, the averages of all acting forces and gradients vanish, random forces play a principal
role, and it is kept in a nonequilibrium state by a rupture of the detailed balance symmetry. One-
dimensional rectified Brownian motion appears in molecular transport through cell membranes,
single-file diffusion, and noise-assisted transport promoted by oscillating barriers [6, 7, 8].

Here, we introduce a model for a one-dimensional Brownian motor which, to the best of our
knowledge, has not been studied previously from the present point of view. Our main purpose
is to study the dynamics of the proposed system analytically, by means of a Langevin model,
and numerically by means of Brownian Dynamics (BD) simulations.
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2. The model

Consider a system of two spherical particles restricted to move in one dimension. Let x1 and
x2 denote the positions of these particles, and R1 and R2 their respective radii. It will be
assumed that they interact through an elastic potential, U = k (x2 − x1 − l)2 /2, where k is
the restoring coefficient and l is the equilibrium distance between the particles. The system
will be immersed in a fluid with viscosity coefficient η. For mathematical simplicity, we will
consider the mass of both particles to be equal to a constant m. R1 and R2 will be assumed
to be sufficiently small such that the dynamics of the system can be well described by the over
damped approximation. Using the center of mass position, xc.m. = (x1 + x2) /2, and the relative
coordinate, xr = x2 − x1, the dynamics of the system can be described in terms of the following
system of Langevin equations

dxc.m.

dt
= −1

2

(

ω2

β2
− ω2

β1

)
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1
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(
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1
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, (1)

dxr
dt

= −
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1

β1
A1, (2)

where: ω =
√

k/m; βi = aRi/m, with a = 6πη; and Ai is the stochastic force per unit mass
acting on the ith particle, for i = 1, 2.

As it is usual, stochastic forces will be considered as Markov-Gaussian processes with zero
mean and fluctuation-dissipation theorem

〈Ai

(

t ′
)

Aj (t)〉 =
2kBTβi
m

δ
(

t ′ − t
)

δij , (3)

where kB is the Boltzmann constant, T is the temperature of the fluid, and no summation over
repeated indices is implied.

If R1 and R2 are constants the formal solution of Eqs. (1) and (2) reads as

xc.m. = xoc.m. + η̃
(

1− e−αt
)

(xor − l) +

∫ t

0
dξ

[
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]

, (4)
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In Eqs. (4) and (5), xoc.m. and xor are the initial values of the xc.m. and xr, respectively;
α = ω2

(

β−1
1 + β−1

2

)

, is the characteristic inverse time for the damped dynamics of the system;

and η̃ = (R2 −R1) /2 (R1 +R2). The auxiliary functions ψ
(i)
c.m., ψ
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r , have the following

definitions for i = 1, 2,
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m
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[
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R1 +R2

]

, ψ(i)
r (t) = (−1)i

m

a

e−αt

Ri
. (6)

3. Algorithm for directed motion

According to Eqs. (4) and (5), in the limit t≫ α−1, the average value of xr− l will vanish, while
that of xc.m. will move by a total amount η̃ (xor − l). Physically, this is a consequence of the
fact that the bigger particle experiences a larger frictional force and acts as a kind of anchor for
the coupled system, while the smaller is able to move due to the elastic interaction and drives
the center of mass. As long as xr 6= l, xc.m. will tend to move, on the average, in the direction
determined by the sign of the product η̃ (xr − l). Now, the perturbation brought about by the
stochastic forces will drive xr away from l persistently, and if η̃ could change its sign, due to a
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change in the values of R1 and R2, then the product η̃ (xr − l) might be forced to keep its sign
constant, thus giving directed motion to the coupled system.

In the present work, we will explore the consequences of varying R1 and R2 between two
defined values Rmax and Rmin (Rmax > Rmin), according to the following prescription

R1 = Rmax and R2 = Rmin if xr < l,
R1 = Rmin and R2 = Rmax if xr > l.

(7)

Notice that when R1 and R2 are allowed to change in time according to the protocol Eq. (7),
then Eqs. (4) and (5) are valid only for a short time interval, τ1, that lasts until the configuration
of the system is updated. After that, the system evolves following similar equations but with

modified functions such that η̃ → −η̃, ψ(1)
c.m. → ψ

(2)
c.m., ψ

(2)
c.m. → ψ

(1)
c.m., ψ

(1)
r → −ψ(2)

r , and

ψ
(2)
r → −ψ(1)

r . It can be shown from Eqs. (3) and (5), and from the previous symmetry
properties, that the probability for observing an elongation of the system of magnitude x̃r,
at time t, given that it was x̃or , at time zero, is the same as the one obtained for a system with
fixed configuration.

On the other hand, in order to describe the statistical properties of xc.m., we will perform the
following simplifying assumptions. First, that the stochastic processes of xc.m. during the time
intervals of fixed configuration, τi, are statistically independent. Second, that the distribution
of times τi has a small dispersion, in such a way that all configuration changes take place at
regular time intervals with duration τ̄ . Third, that observations of the system are performed
after allowing the variable xr to achieve its stationary distribution. Then, it can be shown that

the probability for observing the center of mass at position x
(n)
c.m., after n changes in configuration,

given that its initial value was x
(0)
c.m., is

W
(

x(n)c.m., n |x(0)c.m., 0
)

=
1

√

2πσ2n (τ̄)
exp

{

−
[

x(n)c.m. −
(

x(0)c.m. − ξn (τ̄)
)]2

/2σ2n (τ̄)

}

, (8)

where the functions σ2n (τ̄) and ξn (τ̄) are defined as σ2n (τ̄) = n
[

σ2c.m. (τ̄) + (1− e−ατ̄ )
2
σ2r

]

, and

ξn (τ̄) = n (1− e−ατ̄ ) |η̃| ¯|xr| respectively.
In these definitions σ2c.m. (τ̄) represents the standard deviation for the distribution of xc.m. at

time τ̄ which, for brevity, is not written explicitly; σ2r = kBT/k, is the stationary value of the
corresponding standard deviation of xr; and ¯|xr| = σr

√

2/π.
It can be shown that in the limit ατ̄ ≪ 1, which can be achieved for large values of the k, we

have σ2n (τ̄) = nτ̄kBT (Rmin +Rmax) /2aRminRmax, and ξn (τ̄) = vnτ̄ , where we have identified
an average velocity for the Brownian motor as

v =
1

6
√
2π3/2

Rmax −Rmin

RmaxRmin

√
kkBT

η
, (9)

which as it could be expected increases with the radius difference, the thermal energy of the
bath, and the strength of the elastic interaction, but decreases with the viscosity of the medium.

4. Comparison with Brownian Dynamics Simulations

We implemented BD simulations that allowed us to solve Eqs. (1) and (2), based on a Runge-
Kutta-Maruyama scheme. In our implementation the units of length, mass and energy where
fixed by the values Rmin = 1, m = 1, and kBT = 1, respectively. We performed numerical
experiments where the values of the restitution coefficient and the viscosity were fixed at
k = 5 kBT/R

2
min, and η = 5

√
mkBT/R

2
min, respectively. Figure 1 a, shows the trajectories of

five Brownian motors with different configurations characterized by the values of the percental
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radius difference, ∆ = (Rmax −Rmin) /Rmin = 0.05, 0.10, 0.15, 0.20, 0.25. It can be observed
that the system exhibits, indeed, directed motion even for small values of ∆. The straight lines
shown in Fig. 1 a, represent the corresponding motion at the constant speed given by Eq. (9).
In Fig. 1 a, time is given in simulations units (Rmin

√

m/kBT ).
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Figure 1. Comparison of the theoretical and numerical results. a Typical trajectories of
Brownian motors with different configurations. Noise curves correspond with experimental
results (symbols were included to guide the eye). b Standard deviation for the distribution
function of the trajectory of two ensembles of Brownian motors with different configuration.
Symbols represent numerical results and the continuous curves the analytical prediction.

We also conducted experiments where ensembles of 12500 independent Brownian motors were

simulated. The standard deviation of the distribution of x
(n)
c.m. for such ensembles was numerically

calculated. Figure 1 b shows the results of such experiments for two different types of motors
with configurations ∆ = 0.05 and 0.25. A comparison is performed with the standard deviation
expected from the analytical model. A very good agreement of the theoretical and numerical
approaches can be observed for small simulation times, while a deviation between them can be
noticed for large values of t. This can be understood due to the simplifying assumptions used
to obtain Eq. (8).

We notice that our model is similar to the so called pushmepullyou microswimmer introduced
by Avron et al. in Ref. [9]. The main difference from that model and ours is that in Ref. [9]
thermal forces were neglected while, here, they are the main mechanism that promotes the
motion of the system. Extensions of the present work to include the effects of hydrodynamic
fields around the Brownian motor similar to those considered in Refs. [9] and [10] are in progress.
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