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Abstract. We consider a charged Brownian particle bounded by an harmonic potential,
embedded in a Markovian heat bath and driven from equilibrium by external electric and
magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto
exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward
and elegant fashion, we compute the exact solution for the resulting generalized Langevin
equation, for the case of a constant magnetic field. For the case the source electromagnetic
fields satisfy Maxwell’s equations, yielding spinor-like Mathieu equations, we compute the
solutions within the JWKB approximation. With the solutions at hand we further compute
spatial, velocities and crossed time correlations. In particular we study the (kinetically defined)
nonequilbrium temperature. Therefore, we can display the system’s time evolution towards
equilibrium or towards non equilibrium (steady or not) states.

1. Introduction
The ubiquitous Brownian motion remains an outstanding paradigm in modern physics [1, 2, 3,
4, 5, 6, 7, 8] (and references therein). The theoretical framework consisting of Kramers equation
(a Fokker-Planck equation in phase space), Smoluchowski equation (asymptotic or overdamped
contraction of the latter) and the associated stochastic Langevin equation, have been widely
applied to diverse problems, such as: Brownian motion in potential wells, chemical reactions rate
theory, nuclear dynamics, stochastic resonance, surface diffusion, general stochastic processes
and evolution of nonequilibrium systems, in both classical and quantum contexts. More recent
applications include thermodynamics of small systems, molecular motors, chemical and biological
nanostructures in the burgeoning field of nanotechnology, mesoscopic motors power output and
efficiency. It took approximately sixty years to report exact solutions for the Brownian motion
of a charged particle in uniform and static electric and/or magnetic fields [6, 7, 8, 9]. Here we
outline the extension of our previous work [5, 6, 7, 8] and consider a charged Brownian oscillator
under electromagnetic fields.

In section 2 we write down the Langevin equation for a charged particle under an harmonic
potential and external electric and magnetic fields (as reported in [6, 7] homogeneous forces
can be included straightforwardly into our formalism). In section 3 we compute the exact
solution of Langevin’s equation when considering a time independent magnetic field, via a novel
method (spinors and Pauli matrices), compute spatial, velocities and crossed time correlations;
and outline some applications of our result, in particular we study the (kinetically defined)
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non equilibrium temperature. In section 4 we present the approximate (JWKB) solution of
Langevin’s equation under an electromagnetic field satisfying Maxwell equations. Finally in
section 5 we present further applications and extensions of our work.

2. Langevin Equation for a Charged Brownian Oscillator under Electromagnetic
Fields
Lets us consider a charged (carrier) Brownian oscillating particle, in contact with a reservoir
at temperature TR, under the influence of electromagnetic fields. The Langevin equation
[5, 6, 7, 8, 9, 10, 11] is given by

m
d2x

dt2
= −mλdx

dt
−mω2

0x + q

(
E +

1

c

dx

dt
×B

)
+ Fr(t) (1)

where x is the carrier’s position (the carrier’s velocity is v =dx/dt), m the mass, q the charge,
mλ Stokes’ force constant (λ−1 = τc, collision time), ω0 Hooke’s frequency, c light velocity
(in CGS units) and E&B the Electric and Magnetic external fields, respectively. F r(t) is the
random Brownian force, white Markovian noise with statistics (mean and correlations) given
by [6, 7, 8, 9, 10, 11]

〈Fr(t)〉 = 0 , 〈F r
i (t)F r

j (t′)〉 = 2Γδijδ (t− t′) (2)

where the noise strength is given by Γ = mλkBTR (Fluctuation Dissipation Theorem [1, 2, 3]).
We consider homogeneous fields (constant or solely time dependent), choose B =Bẑ and

with the convenient definitions f =qE/m, fr = Fr/m and cyclotron frequency ωc = q B/mc,
the Brownian Lorentz Langevin oscillator equations are cast as

ẍ = −λẋ+ ωc ẏ − ω2
0x+ fx + frx ,

ÿ = −λẏ − ωcẋ− ω2
0y + fy + fry ,

z̈ = −λż − ω2
0z + fz + frz .

(3)

Since the z (non magnetic) component is uncoupled from the xy (magnetic) motion hereafter
we ignore the former, and when needed we call in the exact solution [1, 2, 3].

Define sigma real matrices (2× 2), a commutative quaternion subalgebra. A is a “σ-matrix”
if the real matrix A can be cast as

A =

(
a1 −a2
a2 a1

)
= a1

(
1 0
0 1

)
+ a2

(
0 −1
1 0

)
= a1 + a2σ , σ2 = −1 .

As in quaternions we define the conjugate Ã, the norm ‖A‖ and the argument arg(A) associated

to A = a1 +a2σ, respectively by Ã = a1 − a2σ, ‖A‖2 = AÃ = detA = a21 + a22, arg(A) = a2/a1.

It follows A−1 = Ã/‖A‖2. Furthermore since σ = ıσy (the y component of Pauli’s σ matrix)
[10] we obtain the (de Moivre like) relations

exp (A) = exp (a1) (cos a2 + σ sin a2) , exp (iA) = exp (ia1) (cosh a2 + iσ sinh a2) ,

and from the last equations, straightforward expressions for several functions such as cosA,
sinA, lnA, Ap, are obtained. In particular: cosA = cos a1 cosh a2 − σ sin a1 sinh a2, sinA =
sin a1 cosh a2 + σ cos a1 sinh a2, lnA = ‖A‖+ σ arctan argA, and

√
A =

√
‖A‖+ a1

2
+ sgn(a2)σ

√
‖A‖ − a1

2
(4)
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for a1 > 0 (for a1 < 0, we choose the convention
√
A = i

√
−A) .

Now, define the “spinors”

q =

(
x
y

)
, φ =

(
fx + frx
fy + fry

)
= f + fr (5)

and as usual, the adjoint spinor q† = (x, y). With Λc = λ+ωcσ, equation (3) is cast in the form

d2q

dt2
+ Λc

dq

dt
+ ω2

0q = φ . (6)

Now, we proceed to solve this system of two second order linear inhomogeneous coupled
equations, for two cases, namely: constant magnetic field (section 3) and plane waves fields,
solutions of Maxwell equations (section 4).

3. Exact Solution for constant Magnetic Field
For a constant magnetic field, equation (6) has an exact solution, and was derived in a related,
more general context [11, 12]. Here we apply a novel method of solution hinging on the quaternion
scheme presented in the previous section. We believe this method to be more straightforward
since in the quaternion commutative sub algebra, our resulting equations can be considered as
representing a bona fide one dimensional problem. At the very end of the calculations, yielding
observable quantities, only then we explicitly decompose any σ-matrices (say A) into its scalar
components A = a1 + a2σ.

Disregarding the homogeneous solution (transient), the exact solution of equation (6) for
constant magnetic field, is given by [13],

q(t) =

∫ t

0
dτG(t− τ) (f(τ) + fr(τ)) (7)

with the Green function

G(t) =
1

Ωc
sin (Ωct) exp

(
−1

2
Λct

)
= g1(t) + σg2(t) (8)

where Ωc =
√
ω2
0 − Λ2

c/4. We can readily compute the (spinor) velocity v(t) = dq(t)/dt. Now,

with a minimum of algebra we can compute all quadratic correlations Cab(t, τ) = 〈 a(t)b(τ)〉 with
the rules given by equation (2), where a and b are any combination of the spinor components of
position q(t) and velocity v(t). The z(t) and vz(t) components are easily computed from either
spinor component by just setting ωc = 0. All expressions are readily integrated into elementary
functions. In particular the case of time independent electric field hereafter considered in this
section. Some interesting correlations are

K(t) =
1

2
m〈v†(t)v(t) + v2z(t)〉 =

3

2
kBT (t) , (9)

V (t) =
1

2
mω2

0〈q†(t)q(t) + z2(t)〉 , (10)

yielding a kinetic time dependent definition of temperature [6, 7, 8] and average potential energy,
respectively. For zero external fields both equal time correlations asymptotically converge
towards the classical equipartition theorem value 3kBTR/2. Interesting preliminary results involve
the transition from a normal carrier profile to a hot carrier profile [8] as a mode softening process
occurs (ω0 → 0) .
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4. Approximate (JWKB) solution for a Maxwell Electromagnetic Field
When the external electromagnetic fields are not constant some approximations are necessary
in order to produce tractable and relevant results (for example in sun activated photovoltaic
devices [14]). In particular for electromagnetic plane monochromatic (ω) waves propagating in
the x̂ direction and satisfying Maxwell equations [15], we have B = ẑB cosω t and E = ŷB cosω t.
After taking real parts (as usual in classical physics), the Brownian Maxwell Langevin equation
is cast as:

d2q

dt2
+ Λ(t)

dq

dt
+ ω2

0q = f + fr , (11)

again, as before, we decouple the planar xy motion from the perpendicular z motion. In this
case we have fx = 0 and fy = cωc cosωt, and Λ(t) = λ +σωc cosωt . Due to the time dependent
Λ(t) dissipative factor, the exact solution involves spinorial Mathieu functions. Nevertheless we
can write the JWKB solutions [16], certainty a good approximation for small field wc � λ,

q(t) =

∫ t

0
dτ G(t, τ) (f(τ) + fr(τ)) , (12)

G(t, τ) =
1√

Ω(t) Ω(τ)
sin

(∫ t

τ
dθΩ(θ)

)
exp

(
−1

2

∫ t

τ
dθΛ(θ)

)
, (13)

where Ω(t) =
√
ω2
0 − Λ2(t)/4. Notice, in this case that the Green function given in equation

(11) is not dependent in the time difference t − τ as in the exact solution in section 3 for
the constant magnetic field case, and stands as the JWKB approximation for damped spinor
Mathieu functions. Correlation functions in this case cannot be reduced to elementary functions
as in the previous case.

5. Conclusions and Future work
In this short communication, we outlined and presented a novel method to compute solutions
for the Langevin equation for a charged Brownian oscillator under external fields, in particular
electromagnetic fields. Two cases were considered, namely: for the constant magnetic field, the
exact solution was presented; and for both time dependent electric and magnetic fields satisfying
Maxwell equations, the approximate JWKB solution was obtained. We outlined too, how to
compute quadratic (two time) correlation functions, related to relevant physical quantities such
as nonequilibrium temperature. These correlation functions will allow us to study the evolution
of this nonequilbrium Brownian process, the oscillator’s dynamics and as mentioned above the
mode softening transition. For the case of constant magnetic field work is in progress, and
results will be presented in a subsequent long paper. As for the JWKB solution, work is at the
preliminary stage. This work is relevant in different fields besides physics, including biology and
economics. It contributes to further understand small (nano) systems, may they be mechanical,
chemical or biological.
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[9] J. I. Jiménez-Aquino and M. Romero-Bastida (2007) Fokker-Planck-Kramers equations of a heavy ion in
presence of external fields, Phys. Rev. E 76 021106/9pp.
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