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Towards Noncommutative Topological Quantum Field 

Theory: New invariants for 3-manifolds 

Zois, I.P. 

PPC, Research Centre, 9, Leontariou Street, Pallini, Attika, Greece 

i.zois@dei.com.gr and i.zois@exeter.oxon.org  

Abstract. We present some ideas for a possible Noncommutative Topological Quantum Field 

Theory (NCTQFT for short) and Noncommutative Floer Homology (NCFH for short). Our 

motivation is two-fold and it comes both from physics and mathematics: On the one hand we 

argue that NCTQFT is the correct mathematical framework for a quantum field theory of all 

known interactions in nature (including gravity). On the other hand we hope that a possible 

NCFH will apply to practically every 3-manifold (and not only to homology 3-spheres as 

ordinary Floer Homology currently does). The two motivations are closely related since, at 

least in the commutative case, Floer Homology Groups constitute the space of quantum 

observables of (3+1)-dim Topological Quantum Field Theory. Towards this goal we define 

some new invariants for 3-manifolds using the space of taut codim-1 foliations modulo coarse 

isotopy along with various techniques from noncommutative geometry. 

1.  NCG as the underlying geometry for physical theories  

There is accumulating evidence in various space-time dimensions that NCTQFT should provide a 

framework general enough to incorporate all 4 known interactions in nature. 

Case I (4 dimensions): From the influential article due to G. ‘t Hooft on dimensional reduction in 

quantum gravity [1] where the holography principle was introduced, we know that quantum gravity 

should be a topological quantum field theory.  

The argument is quite elegant: Given a (pseudo) Riemannian 4-manifold (M,g) we adopt the standard 

approach that the dynamical variable of the theory is the metric g and quantum field theory 

corresponds to computing the partition function. Thus one has to perform the path integral 

Z(M) ~ ∫Dg exp(iSM)   (1) 

where SM denotes the Einstein -Hilbert action on M  

SΜ = (1/2κ)∫M R     (2) 

with R the scalar curvature and in (1) the path integral is meant to integrate over all metrics g on the 

manifold M. If one were able to perform this path integral over all metrics, then the result should 

depend only on the topological data of the initial Riemannian manifold M. The first experimental 

evidence for holography (dimensional reduction in quantum gravity) was provided by the GEO 600 

experiment. This is an interferometric gravitational wave detector outside Hannover in Germany. C.J. 

Hogan in a series of articles [2] gave an explanation of the mysterious (300- 1400)Hz “noise” as 

arising from non-locality mechanisms due to holography.  

Concerning the other 3 interactions (strong, weak and electromagnetic) we know from Connes’ et al. 

work [3] that they can be incorporated in a noncommutative (nc)  space arising as the Cartesian 
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product of a 4-dim spin Riemannian manifold times a discrete space of metric dim 0 and KO-dim 6 

mod 8. The nc space has a corresponding algebra of the form 

C + H + M3(C) 

where C denotes complex numbers, H denotes the quaternions and M3(C) denotes 3X3 complex 

matrices.  

 

[Aside Note 1: The total  algebra becomes M2(H) + M4(C) if we incorporate the higher dimensional 

analogue of the Heisenberg commutation relations and the phenomenologically more accurate Pati-

Salam gauge symmetry, see [15]]. 

 

Hence if we combine the two, gravity plus gauge theories of Yang-Mills type (for the electroweak  and 

strong interactions) we believe that NCTQFT should provide the correct framework to describe all 4 

known interactions in nature. 

Case II (higher dimensions, string/M-Theory): We know that nc spaces arise both as extra (nc) 

toroidal compactifications of matrix models (Connes-Douglas-Schwarcz [4]) and from open strings 

when a gauge B-field is turned on (Seiberg-Witten [5]). In both cases, assuming space-time has either 

4 dimensions or higher, gauge fields present are the origins of noncommutativity of the underlying 

geometry. 

 

2.  Invariants for 3-manifolds emerging from flat connections  

According to the Atiyah definition of topological quantum field theory [6],  one starts with a manifold 

with boundary and the correlation functions of the theory take values in some vector spaces associated 

to the boundary manifold. In the simplest case where the 4-manifold has no boundary, the correlators 

are just numerical (topological) invariants of the (bulk) manifold. Let us focus on dimension 4 which 

is the macroscopic space-time dimension and carries greater geometric interest. Obviously in this case 

the boundary of a 4-manifold say M, will be a 3-manifold, say N, namely N = ∂M. We fix SU(2) as 

our working Lie group. Given a 3-manifold N (assumed closed, oriented and connected) with 

fundamental group π1(Ν), the set  

R(N) : = Hom (π1(Ν),SU(2)) / ad(SU(2)) 

consisting of equivalence classes of representations of the fundamental group  π1(Ν) to SU(2) modulo 

conjugation tends to be discrete. For example if N is a (rational) homology 3-sphere, then R(N) has 

finite cardinality and the trivial representation is isolated. 

There is a 1:1 correspondence between the elements of the set R(N) above and elements of the set 

 

A(N) : = {flat SU(2)-connections on N} / (gauge equivalence). 

 

The bijection is the holonomy of the flat connection. The crucial observation is this: Although R(N) 

depends on the homotopy type of N, we can get topological invariants of N (namely invariants under 

homeomorphism) if we use the moduli space A(N).  Depending on how one “decorates” or 

manipulates the (gauge classes of) flat SU(2)-connections in the set A(N) above, one can obtain the 

following:  

 

a. The low energy limit of the Jones-Witten invariant for N (see [7]).  

 For any flat connection A (plus a Riemannian metric on N), one can form the twisted de Rham 

differential  

dA = ∂ + A Λ   (3) 

twisted by the flat connection A; this is the exterior covariant derivative with respect to the connection 

A; it is a differential, namely  its square equals zero due to the flatness of the connection.  Then one 

can form the twisted Laplacian ΔΑ in the standard way  

ΔΑ=dAdA* + dA*dA  (4)  
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(using the metric to define first the Hodge star operator  “ * ” and then the adjoint operator dA* in the 

usual way) 

dA*=(-1)kn + n + 1 *dA* (5) 

(acting on k-forms on an n-manifold) and then compute the Ray-Singer torsion T(N,A) of the flat 

connection A as follows: 

log[T(N,A)] = (1/2) Σ i=0 3 (-1)i i ζ’(Δ i,A)  (6) 

where Δ i,A denotes the twisted Laplacian acting on i-forms and  

ζ’(Δ i,A) (0)  = (- d/ds) ζ(Δ i,A)|s = 0 = logD(Δ i,A)   (7) 

is the ζ-function regularised determinant of the twisted Laplace operator.  Finally we add all Ray-

Singer  torsions (for all gauge classes of flat connections) and we get a topological invariant for the 

manifold N. Thus the finiteness of the set A(N) is crucial for the convergence (finiteness in fact) of the 

torsion sum. 

  

[Aside Note 2: The Ray-Singer torsion is defined using the twisted Laplacian which involves the 

choice of a Riemannian metric; Under certain conditions-vanishing of twisted de Rham cohomology 

groups- it can be proved that the torsion is nonetheless independent of the metric].  

 

Recall that the ζ-function of the Laplace operator ζ(Δ i) is by definition (for complex s) equal to  

ζ(Δ i) = Σλn
-s 

where we sum over all non-negative eigenvalues λn. 

 

b. The Casson invariant. 

 Take again G = SU(2) and pick a Hegaard splitting on N. Then, assuming that the set R(N) is regular 

(namely that the 1st twisted de Rham cohomology groups of N vanish for all flat connections), each 

(gauge class of) flat connection in the set A(N) acquires an orientation and then we take the difference 

between the number of positively minus the number of negatively oriented flat connections. Although 

the orientation depends on the Hegaard splitting, the difference behaves like an index and it is 

independent of the Hegaard splitting of N. The Casson invariant is the above difference of the number 

of positively minus the number of negatively oriented gauge classes of flat SU(2)-connections. Again 

the finiteness of both sets R(N) and A(N) is crucial for the definition of the Casson invariant. 

 

c. Floer homology 

Take again G =S U(2) and consider the Cherns-Simmons 3-form as a Lagrangian density on N. The 

corresponding action functional  

S = (k/4π) ∫N tr[A Λ dA + (2/3) A Λ Α Λ Α] (8) 

defines a Morse function on the space of irreducible connections. Its critical points are the flat 

connections. 

Then each element of A(N) aquires a ``label'' which is the Morse index of the critical point; in 

ordinary finite dimensional Morse theory  this is equal to the number of negative eigenvalues of the 

Hessian. But the Hessian of the Chern-Simons function is unbounded below and we get infinity as 

Morse index for every critical point. So naive immitation of ordinary finite dimensional Morse theory 

techniques do not work. 

Floer in [8] observed the following crucial fact: if we pick a Riemannian metric on N, then considering 

the non compact 4-manifold R X N along with its corresponding Riemannian metric, a continuous 1-

parameter family of connections  At on N corresponds to a unique connection A on  R X N; then, 

choosing the axial gauge (0th component of the connection vanishes), the gradient flow equation for 

the Chern-Simons function S on N corresponds to the instanton equation on the non compact 4-

manifold R X N. 

∂tAt = *FAt  FA
+ = 0   (9) 

 Then consider the linearised instanton equation 

dAa = 0, 
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where a is a small perturbation. This operator is not elliptic; we perturb it to  

DA = - dA* + dA
+ 

to make it elliptic. Then the finite integer Morse index for each critical point comes as the relative 

(with respect to the trivial flat connection) Fredholm index of  the perturbed elliptic operator  DA. In 

this way the moduli space A(N) aquires a Z/8 grading and then we follow ideas from ordinary finite 

dimensional Morse theory: We define the Floer-Morse complex using as generators the critical points 

and the ``differential'' is essentially defined by the flow lines of the critical points. Taking the 

cohomology in the usual way we get the Floer homology groups of N. The Euler characteristic of the 

Floer-Morse complex equals twice the Casson invariant (see [9]). Again the finiteness of the set A(N) 

and R(N) is crucial in this construction. 

 

All the above constructions depend crucially on the fact that the set A(N) (or equivalently the set 

R(N)) is finite. Unfortunately this is true  for a rather small class of 3-manifolds (eg homology 3-

spheres). It would be a big generalisation  if we could find another moduli space which is finite for a 

larger class of 3-manifolds and if possibly for all 3-manifolds. The key observation is that in fact such 

a set exists: It is the space of taut codim-1 foliations  modulo coarse isotopy. As proved by Gabai in 

[10], this set is finite for all 3-manifolds (closed, oriented and connected). The use of foliations has an 

additional advantage: it brings noncommutative geometric techniques on stage. 

 

3.  New invariants for  3-manifolds emerging from foliations 

A codim-1 foliation F on a 3-manifold N is given by an codim-1 (hence dim 2) integrable subbundle F 

of the tangent bundle TN of N. Locally this can be defined by a 1-form ω satisfying  
ω Λ dω = 0  (10) 

A foliation is called topologically taut if there exists a circle S1 intersecting transversally all leaves. It 

is called geometrically taut if there exists a Riemannian metric for which all leaves are minimal 

surfaces (they have mean curvature zero). It is called homologically taut if there exists a closed 2-form 

β which is positive along the leaves. These 3 different definitions of tautness are equivalent. Two 

foliations are called coarse isotopic if up to isotopy of each one of them their oriented tangent planes 

differ pointwise by angles less than π.  For any 3-manifold N (assumed closed, oriented and 

connected)  we define the set G(N) as follows: 

 

G(N) = {taut codim-1 foliations on N} / (coarse isotopy) 

 

and let us denote by g(N) the cardinality of the set G(N). Then Gabai in [10] proved that g(N) is finite 

for all 3-manifolds (closed, oriented and connected) and it is a topological invariant of the 3-manifold 

N. The crucial fact is that although coarse isotopy depends on the choice of a Riemannian metric 

(since it involves the notion of angle), the number g(N)  does not.   
Armed with Gabai’s result, there is the possibility  to define new invariants and constructions on N by 

using different “labels” on elements of the set G(N). 

 

α.  The Godbillon-Vey (GV for short) invariant of the manifold N 

Each codim-1 foliation F on the 3-manifold N  has a 3-dim characteristic class which is the Godbillon-

Vey class of the foliation. This is defined as follows: The integrability condition (10) is equivalent to 

dω = ωΛθ for another 1-form θ. Then θΛdθ is a 3-dim real cohomology class of N. We add all the GV 

classes for all elements in G(N). The result will be another 3-dim real cohomology class of N and then 

we can evaluate it on the fundamental homology class of N and thus get a real number as a result. This 

is the GV invariant of the manifold N (not the foliation).  
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b. The sum of the Ray-Singer torsions for foliations 

A codim-1 foliation F on a 3-manifold N is given by an codim-1 (hence dim 2) integrable subbundle F 

of the tangent bundle TN of N. Integrability means that the Lie bracket of vector fields is closed in F. 

Equiavlently, this means that the horizontal (or tangential or leafwise) exterior derivative dF which is 

the usual exterior derivative restricted to take derivatives along the horizontal (or tangential or 

leafwise) directions only is a differential, namely dF
2 = 0. We can use a Riemannian metric and define 

the Hodge star operator along with the adjoint horizontal differential dF* and finally we can define the 

tangential Laplacian in the usual way (see section 2 above) 

ΔF = dFdF* + dF*dF.  (11) 

\Then we can define the Ray-Singer torsion for the foliation F in an analogous way as we did for flat 

connections (see equation 6 above) 

  log[T(N,F)] = (1/2) Σ i=0 3 (-1)i i ζ’(Δ i,F)  (12) 

with the same definition for the ζ-function regularized determinant (equation 7).  Finally we can add 

all Ray-Singer torsions for each foliation coarse isotopy class in G(N) and thus get an invariant for the 

3-  manifold N. 

 

 

c. Sum of Tangential Chern-Simons 3-forms 

Again F is a codim-1 foliation on the 3-manifold N. Since the tangential exterior derivative dF of the 

foliation F is a differential, we can form the tangential  de Rham complex (ΩF
● (Ν), dF), where   ΩF

● 

denotes sections of the exterior bundle Λ●(F*). Taking the cohomology in the  usual way we get the so-

called tangential cohomology groups HF
●(N). One can build  the tangential version of the usual Chern-

Weil theory of characteristic classes and finally  construct the tangential Chern character from K-

theory to tangential cohomology as a ring map  

chF : K0(N)  → +n HF
2n (N;C) 

From the above constructions it follows that tangential Chern classes have their corresponding 

tangential Chern-Simmons forms (see [11]). One can take the tangential Chern-Simons 3-forms for 

elements in G(N), add them up and integrate over the fundamental 3-dim homology class of N. This 

will give another numerical invariant for N. 

 

d.Transverse fundamental cyclic cocycles of foliations 

In general, given a codim-q foliation F on an n-manifold N, there is the noncommutative approach to 

the study of foliations. This amounts to defining the holonomy groupoid  Gr(F,N) of the foliation and 

then complete it to a C*-algebra, this is the corresponding foliation C*-algebra denoted C(F,N). This 

construction is complicated and can be found in detail in Connes’  book on Noncommutative 

Geometry [12]. Moreover, to each foliation F as above on N (with the mild assumption that its  normal 

bundle Q: = TN/F is orientable) one can  construct its transverse fundamental cyclic cocycle (see Zois 

[13]). This is a q-dim class (where q is the codimension of the foliation F) in the cyclic cohomology  

HCq (C∞(F,N)). 

  

[Aside Note 3: Actually in the construction of the  tfcc it is more convenient to use the algebra of 

smooth complex functions C∞(F,N) which is a dense subalgebra of C(F,N) because the cohomology of 

C(F,N) is rather poor in many cases]. 

 

In our case at hand, taut foliations by definition (see topological tautness above) have a closed 

transversal which is an S1. If a foliation admits a closed transversal, then its corresponding C*-algebra 

simplifies drastically and it is reduced to just the algebra of continuous functions on the transversal. 

 

[Aside Note 4: This is actually true in the case where the transverse circle intersects every leaf only 

once.  We make this simplifying assumption here]. 
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 Hence in our case where we consider taut codim-1 foliations on a 3-manifold N, the foliation C*-

algebra will just always be  C(S1), ie the algebra of continuous complex valued functions on S1 

vanishing at infinity. Consequently for each taut foliation coarse isotopy class in the moduli space 

G(N), its corresponding transverse fundamental cyclic cocycle defines an element in HC1 (C∞(S1)), the 

first cyclic cohomology group of the algebra C∞(S1). One can add all the corresponding transverse 

fundamental cyclic cocycles for elements on G(N) and get again as a result an element in HC1 

(C∞(S1)). Thus we have to figure out what HC1 (C∞(S1)) is. 

There is a theorem of Connes (see [12]) according to which (for compact M) there is a canonical 

isomorphism 

 

 HCk(C∞(M)) ≈ ZdR
k(M) +  HdR

k-2(M) + HdR
k-4(M) + …, 

 

where ZdR
k(M) denotes  the set of closed de Rham k-currents, and HdR

j(M) denotes the ith de Rham 

homology group. 

 

 

Hence in our case at hand we have HC1(C∞(S1)) ≈ ZdR
1(S1). 

 

Since the degree is the same as the dimension, one can only integrate over S1 itself and ZdR
1(S1) must 

be 1-dimensional, generated by the fundamental homology class [S1]. 

 

If the transverse circle does not intersect every leaf only once, then the foliation algebra will be more 

complicated. Nonetheless it will still be a simple C*-algebra though. 

 

These new invariants need further study. In the generic case, where the assumption in Aside Note 4 

above does not hold, what can go wrong is that the tfcc may be invariant under an  equivalence 

relation which is more narrow than coarse homotopy and in fact each coarse homotopy class contains 

an infinite number of distinct tfcc. In this case convergence issues arise and one must be able to 

somehow control the infinite sum. (This is currently under investigation). 

 

Looking further ahead, the possibility to define a noncommutative version of Floer Homology  (see 

[14])  for all 3-manifolds using NCG tools and techniques starts from a Lagrangian density whose 

Euler-Lagrange equations yield taut codim-1 foliations as solutions. This is known as the “inverse 

problem” in the calculus of variations. Hopefully we shall be able to report on this elsewhere. 
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