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Abstract. The small-angle scattering (SAS) structure factor from a new model of a 3D deterministic
fractal in which the relative positions and the number of structural units vary with fractal iteration number
is calculated. It is shown that, depending on the relative positions of scattering units inside the fractal, we
can obtain various types of power-law successions, such as: convex/concave - when the absolute value of
the scattering exponent of the first power-law decay is higher/smaller than that of the subsequent power-
law decay, or any combination of them (i.e. convex-concave or concave-convex). The obtained results can
explain experimental SAS (neutron or X-rays) data which are characterized by a succession of power-law
decays of arbitrary length.

1. Introduction
Small-angle scattering is a well established technique [1, 2] for determination of structural properties of
complex nano and micro systems such as: aggregation processes in polymeric solutions [3], morphology
of crystalline amorphous block copolymers in solution [4], microstructure of elastomeric/composite
membranes [5, 6], and is especially suited for those structures which are characterized by either exact or
statistical self-similarity (deterministic and random fractals; [7–9]). Its main advantage is the possibility
to distinguish between mass and surface fractals [10–14] through the value of the scattering exponent
τ from the power-law dependence I(q) ∝ q−τ , where τ = Dm for mass fractals (0 < Dm < 3), and
τ = 6 −Ds for surface fractals (2 < Ds < 3). Here, Dm and Ds denote the mass, and respectively the
surface fractal dimension, and q is the scattering vector magnitude.

For random fractals, besides the fractal dimension, one may obtain the overall size of the fractal from
the Guinier region, and the size of the smallest structural ’subunit’ composing the fractal, from the end
of the fractal region. For deterministic fractals with a single scale it has been shown that additional
structural information can be obtained from experimental SAS data, such as: the iteration number, the
fractal scaling factor, or the total number of structural subunits composing the fractal [15, 16].

However, some experimental SAS data [17–21] show a succession of power-law decays with
arbitrarily scattering exponents, and recently few theoretical models have been proposed both, for
’convex’ / ’concave’ data (where the absolute value of the scattering exponent of the first power-law
regime is higher/smaller than that of the next power-law regime) [22, 23]. While for ’convex’ data the
model assumes a three-phase structure in which homogeneous structures with scattering length densities
ρ1 and ρ2 are immersed in a homogeneous medium with density ρ0, for the ’concave’ data the basic
assumption is a two-phase system in which the homogeneous structures of scattering length density ρ1
are fractals whose scaling factor varies with iteration number.
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In this work we develop a new theoretical model based on deterministic mass fractals with a single
scale, and we show that the behavior given by a succession of ’convex’ / ’concave’ SAS data, and more
generally, by any combination of them, can be explained also by a two-phase system in which the relative
positions and the number of structural subunits vary with fractal iteration number.

2. Models
In building our models, we consider a top-down approach in which a cube of edge l0 with a ball of radius
r0 = l0/2 in its center (initiator) is repeatedly divided in smaller pieces according to some prescribed
rules (see below). We choose a Cartesian system of coordinates whose center coincide with the center
of the initiator. The iteration rule consists in replacing the cube of edge l0 with a given number k1 > 1
of smaller cubes of edge length l1 = l0/3 (first iteration). Then, at m-th iteration the edge of the cube is
lm = l0/3

m and the radii of concentric balls are rm ≡ lm/2 = r0/3
m. Here, we choose three different

fractals (Fig. 1) with a significant difference in their fractal dimensions Dm so that also the differences
in the slopes of scattering structure factor and the succession of ’convex’/’concave’ power-law regimes
to be easily recognized.

The so-obtained fractals consist of subunits with scattering length density ρu immersed in a solid
matrix of scattering length density ρm. Thus, the scattering contrast will be given by ∆ρ = ρu − ρp and
the scattering intensity becomes [1]:

I(q) = n |∆ρ|2 V 2〈|F (q)|2〉, (1)

where n is the concentration of fractals, V is their volume, the angle brackets 〈· · · 〉 is the averaging over
all possible orientations, and F (q) ≡ (1/V )

∫
V e
−iq·rdr is the normalized form factor.

We choose configurations in such a way that the scattering units are positioned symmetric with respect
to the origin, and their number at m-th iteration is given by

km =


8m, for fractal I,

14m, for fractal II,

20m, for fractal III.

(2)

Note that fractal-I is the well known triadic Cantor set, and fractal-III is the Menger sponge. Thus, the
fractal dimensions are obtained in the limit of infinite number of iterations, and is given by [15]

Dm = lim
m→∞

log km
log(1/3)

=


1.89, for fractal I,

2.40, for fractal II

2.71, for fractal III.

(3)

According to the number of subunits given by Eq. (2), the corresponding generative function
describing the relative positions of scattering subunits inside each fractal, can be written as:

Gm(q) =


Λm(q), for fractal I,

1

14
(8Λm(q) + 2Γm(q)) , for fractal II

1

20
(8Λm(q) + 4Γm(q)) , for fractal III,

(4)

where Λm(q) ≡ cos(lmqx) cos(lmqy) cos(lmqz), Cm(q) ≡ cos(lmqx) + cos(lmqy) + cos(lmqz), and
Γm(q) ≡ cos(lmqx) cos(lmqy) + cos(lmqx) cos(lmqz) + cos(lmqy) cos(lmqz) (Fig. 1).

Each of the individual fractal in Fig. 1 gives rise to a single power-law decay (with τ = Dm) in
the scattering intensity. Thus, in order to observe a succession of power-law decays with different
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Figure 1. The initiator and first two iterations for models with km = 4m (upper fractal), km = 8m

(middle fractal) and km = 12m (lower fractal), for arbitrarily iteration m.

exponents, we proceed as follows: for the first p iterations we consider the structure of a single fractal
(from those defined in Eq. (2)), for the next q iterations we consider the structure of another fractal
(also from those defined in Eq. (2)), and finally, for the next r iterations we consider the structure of
the remaining fractal. Thus, depending on the particular fractal chosen for each p, q or r iterations, we
shall expect any of the following type of successions of power-law decays: q−1.89 → q−2.40 → q−2.71

(’concave’ succession), q−2.71 → q−2.40 → q−1.89 (’convex’ succession), q−2.40 → q−2.71 → q−1.89, or
q−2.40 → q−1.89 → q−2.71. For simplicity, in the following we choose p = q = r = 2 for each type of
succession. However, the length of each individual fractal region can be varied by changing any of the
values of p, q or r.

3. Scattering structure factor
In order to calculate the monodisperse scattering structure factor, we neglect the shape of fractal subunits,
and thus, using Eq. (2) together with Eq. (4) we can write [15, 16]:

Smono
m (q) = km〈

m∏
i=1

|Gi(q)|2〉. (5)

Then, the polydispersity involves a system of various sizes l, and the distribution function DN (l) is
defined in such a way that DN (l)dl represents the probability of finding a fractal with sizes between
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(l,dl). Therefore, the polydisperse structure factor given by Eq. (5) becomes:

Spoly
m (q) = km

∫ ∞
0
〈
m∏
i=1

|Gi(q)|2〉DN (l)dl. (6)

In the following, a log-normal distribution of mean length µ0 ≡ 〈l〉D and relative variance σr =
(〈l2〉D − l20)1/2/l0 is considered.

4. Results and discussions
In order to obtain all the possible combinations of power-law successions we consider the following types
of fractals: Type I - a fractal consisting of fractal I for first two iterations, followed by fractal II for
3-rd and 4-th iteration, and fractal III for 5-th and 6-th iterations. In this way, the monodisperse
structure factor is characterized by the following sequence of generalized power-law regimes [15]
q−1.89 → q−2.40 → q−2.71 (Fig. 2a - black curve). The succession of simple power-law regimes, as
obtained in most of the experimental data, are recovered by taking into account the polydispersity, as
discussed in section (3)/ The numerical results are presented in Fig. 2a - red curve, which clearly show
the succession of simple regimes with decreasing absolute values of the power-law exponent, i.e. a
’concave’ scattering curve.

The other possible combinations of power-law successions are obtained similar as for fractal I .
For example, the fractal II structure is built from the fractal consisting of fractal II for first two
iterations, followed by fractal III at 3-rd and 4-th iterations, and then fractal I at 5-th and 6-th
iterations. The corresponding mono and polydisperse structure factor are shown in Fig. 2b (black, and
respectively red curves), which clearly reveals a combination of ’concave’ scattering corresponding
to transition q−2.40 → q−2.71 followed by a ’convex’ scattering corresponding to transition from
q−2.71 → q−1.89. The results corresponding to SAS from TypeIII and TypeIV are shown in Fig. 2c
and d, which illustrates the other possible transitions: q−2.40 → q−1.89 → q−2.71, and respectively
q−2.71 → q−2.40 → q−1.89.

For all the considered Types, one can observe that beyond the last generalized/simple power law-
decay we have q > 1/(βms l0), and thus the structure factors shown in Fig. 2a-d tend to one. This
implies that the asymptotic values are 1/km (see Eq. 2), which is in agreement with the numerical results
(horizontal lines in Fig. 2a-d).

5. Conclusion
We have built a new theoretical model based on fractal structures which can explain experimental small-
angle scattering curves characterized by a succession of power-law decays. Its main feature consists in
changing the construction rule of the fractal after a finite number of iterations (here, at every second
iteration), which give rise to a succession of power-law decays with different scattering exponents.
We confirmed this by performing analytical calculations of mono and polydisperse structure factor. In
addition, the obtained structure factor allows us to obtain the number of subunits in each fractal, from
the asymptotic values at high q.

The proposed model is based on deterministic mass fractals and can be applied to ’convex’/’concave’
data or any combination of them.
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