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Abstract.
Let X be an abstract space and A a denumerable (finite or infinite) alphabet. Suppose that

(pa)a∈A is a family of functions pa : X → R+ such that for all x ∈ X we have ∑a∈A pa(x) = 1
and (Sa)a∈A a family of transformations Sa : X→ X. The pair ((Sa)a, (pa)a) is termed an iterated
function system with place dependent probabilities. Such systems can be thought as generalisations
of random dynamical systems. As a matter of fact, suppose we start from a given x ∈ X; we
pick then randomly, with probability pa(x), the transformation Sa and evolve to Sa(x). We are
interested in the behaviour of the system when the iteration continues indefinitely.

Random walks of the above type are omnipresent in both classical and quantum Physics. To
give a small sample of occurrences we mention: random walks on the affine group, random walks
on Penrose lattices, random walks on partially directed lattices, evolution of density matrices
induced by repeated quantum measurements, quantum channels, quantum random walks, etc.

In this article, we review some basic properties of such systems and provide with a pathfinder
in the extensive bibliography (both on mathematical and physical sides) where the main results
have been originally published.

1. Introduction and motivation
The (discrete) time evolution of several phenomena in (classical and quantum) physics, biology,
ecology, economics, etc. are modelled by dynamical systems. Mathematically, a dynamical
system is a map S : X → X from some measurable space (X,X ) into itself. The system
starts at time n = 0 at some initial state x0 ∈ X; the next moment n = 1, the system gets at
state x1 = S(x0) and recursively for all (integer) instants n ∈ N, we have xn+1 = S(xn). At
this level, we don’t specify further either the nature of the space X beyond its measurability
properties (very often it is a topological or metric space) or the nature of the transformation S
(very often it exhibits some non-linearity). Nevertheless, we mention that even very innocent
looking examples on gentle spaces — like iteration of the logistic map S(x) = 4x(1− x) on
X = [0, 1] —- can exhibit a tremendously complicated behaviour (see [1] for instance, for a
user-friendly introduction to the topic).

When dealing with realistic systems, it is natural to suppose that the evolution is influenced
by external parameters, collectively denoted by some symbol a ∈ A, i.e. instead of having
a single evolution transformation S, we have a collection (Sa)a∈A, parametrised by A. Now,
on a realistic system the control of external parameters can never be complete; to model such
imperfect knowledge, we introduce a randomness on the parameters a. Thus, the evolution
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is described by a random dynamical system, when the system at moment n is in state x,
the applied transformation Sa is chosen among the possible ones with probability pa(x); the
evolution is described by the Markovian kernel

P(x, B) := P(Xn+1 ∈ B|Xn = x) = ∑
a∈A

pa(x)δSa(x)(B), for B ∈ X . (1)

Such systems, in their simplest form with place independent probabilities (i.e. with pa
constants), have been introduced — and termed iterated function systems — in [18] where
the conditions of the existence of an attracting set supporting their invariant measure have
been given. The full-fledged place-dependent variant has been introduced in [2] when X is a
metric space; the fractal dimension of the attractor has been obtained under the condition that
the place-dependent probabilities are Lipschitz-continuous. Conditions of asymptotic stability
of such systems are obtained in [19] (extending previous results in [24]).

Although these systems are very versatile, can model numerous phenomena, and exhibit
very rich a structure in numerical simulations, rigorous mathematical results are lacking when
the place-dependent probabilities are not continuous. (A very partial case is treated in [20]).

It is worth noting that the joint process (An, Xn)n∈N taking values in A×X is also a Markov
chain with transition probability kernel Q((a, x), (b, B)) := P((An+1 = b, Xn+1 ∈ B|An =
a, Xn = x) = pb(x)δSb(x)(B) for a, b ∈ A and B ∈ X ; the kernel P, introduced in equation (1),
is obtained from the kernel Q by marginalisation when the A-component is not observed. On
the contrary, the marginalisation of Q where the X-component is not observed does not — in
general — give rise to a Markov chain but only to what is called a hidden Markov chain. A hidden
Markov chain can become an ordinary Markov chain under some specific circumstances (for
instance when the pa’s are constant). Let us mention finally that the restriction of A being
denumerable can be removed is some cases.

In the sequel, we present some models fitting this formalism.

2. Random walks on lattices
2.1. Simple random walks on directed sublattices of Zd

Let X = Zd, A = {±e1, . . . ,±ed} ⊂ X, and for any a ∈ A and any x ∈ X, define
Sa(x) = x + a. If the functions pa(x) = (2d)−1 for all a and x, the process (Xn) governed
by (1) is equivalent to the simple symmetric random walk on Zd, introduced, almost a century
ago, in the celebrated paper of Pólya [33]. A lot of properties of simple random walks can be
subsumed under their recurrence/transience behaviour; already in [33] it has been established
that the simple symmetric random walk on Zd returns almost surely infinitely often (it is
recurrent) to its starting point in d ≤ 2 but almost surely only a finite number of times (it
is transient) in d ≥ 3. It is worth noting that interesting connections of random walks on
Zd with computational trajectories of finite automata or with properties of (Abelian) groups
can be made. Let us mention also that simple random walks serve in modelling a plethora of
physical phenomena: every time a physical phenomenon is described by a differential equation
involving a Laplacian, one can coin a random walk representation of the phenomenon.

It is quite surprising that although random walks on Zd have a centennial history, random
walks on directed sublattices of Z2 had not been mathematically studied until 2003. These
walks are more realistic if one wishes to model information flow on internet or vehicle traffic
in urban networks for instance; they have been considered by hydrologists [28] and a related
model has been heuristically studied by computer simulations in [34] but no mathematical
result was known before [6, 7]. They are obtained with A and X as in the simple random walk
on Zd case but with different choices of place-dependent pa’s. Recall that X = Z2 = Z×Z,
hence every x ∈ Z2 can be written as a pair x = (x1, x2) ∈ Z×Z. Three different models
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of partially directed lattice, depicted in the figure 1, have been studied in [6]. These directed
lattices arise as sublattices of Z2 by rendering their horizontal lines unidirectional.

Alternate lattice Half-plane one-way Randomly horizontally directed

pa(x) =


1/3 if a = ±e2

1/3 if a = e1 and x2 ∈ 2Z

1/3 if a = −e1 and x2 ∈ 2Z + 1
0 otherwise.

pa(x) =


1/3 if a = ±e2

1/3 if a = e1 and x2 < 0
1/3 if a = −e1 and x2 ≥ 0
0 otherwise.

pa(x) =


1/3 if a = ±e2

1/3 if a = σx2 e1

0 otherwise.

Figure 1: Three different lattices having one-way horizontal lines and the corresponding probability functions
pa. (i) In the alternate lattice the horizontal lines are going eastward or westward according to the parity
of the ordinate. (ii) In the half-plane lattice, all upper half-plane lines are westward and all lower half-plane
eastward. (iii) In the random horizontal lattice a honest coin is flipped to decide the way each line is going
and this choice is encoded into {−1, 1}-valued random variable σx2 .

We proved that the random walk on the alternate lattice is recurrent, on the half-plane one-
way is transient, and on the randomly directed lattice almost surely transient. It is worth
noting that all the above lattice have zero net drift; the dramatic change of behaviour in the
recurrence/transience properties is due solely to the directedness of the lattice.

As expected, several new results have been triggered by this work (see [14, 15, 30, 32, 11, 13,
8] for instance). It is worth noting that from the above models only (i) can be obtained by the
computational trajectories of a finite automaton; model (ii) requires a push-down automaton
while model (iii) a genuine Turing machine with bi-infinite external tape. Additionally, the set
of all possible trajectories looses the natural group structure to remain merely a semi-groupoid.

2.2. Random walks on Penrose tilings
Another non-trivial model that fits the aforementioned description is the random walk on
the complexes obtained by the edges of Penrose tilings. Introduced first as a mathematical
recreational problem, such tilings proved essential in the crystallographic description of some
alloys (like Al-Mn, Ho-Mg-Zn) that exhibit 5-fold and icosahedral symmetries — forbidden by
classical crystallography — in their X-ray diffraction patterns1. Recall that Penrose tiling of
Rd (see figure 2) is an aperiodic covering of the space by finitely many types of prototiles.
Although the initial construction of Penrose [31] for d = 2 was made by use of local
matching rules, a cut-and-project method giving a systematic construction for every d has been
introduced in [21, 29].

The idea of this cut-and-project method is to decompose RN = E⊕ E′ into a direct sum of
mutually orthogonal Euclidean spaces E and E′ with N > d, dim E = d and dim E′ = N − d.
When the unit cube C = {y ∈ RN : y = ∑N

i=1 yiei, yi ∈ [0, 1]} is translated parallel to E it
forms the “strip” S = C + E. All points of the integer lattice ZN within the strip S are then
orthogonally projected on E. When the principal directions of E are incommensurate with
ZN , the points in the strip are in bijection with their orthogonal projections on E or E′. When
projected on E, they produce an aperiodic tiling of E by finitely many types of prototiles. To
illustrate this method we give in the figure 2 below this construction for the aperiodic tiling

1 This experimental observation [35] was essential for awarding the 2011 Nobel prize in Chemistry to Dan
Shechtman.
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of the line by short and long segements, obtained by projecting a strip in Z2 on a line with
irrational slope and the tiling of the plane by projecting the strip in Z5 with respect to a given
irrationally oriented plane.

x

y

E

Figure 2: Left: The aperiodic tiling of the one-dimensional space E by short and long segments. The shaded
region within the two parallel oblique lines is the strip S . The tiling is obtained by projecting on E the
horizontal and vertical segments of the line zigzagging inside the strip. Centre: The aperiodic tiling of R2 by
2 different types of lozenges, each coming into 5 different orientations to give rise in 10 types of prototiles
arranged in a pattern having locally a 5-fold symmetry (Public domain image, source: Wikipedia) Right: X-ray
experimental diffraction pattern on a Zn-Mg-Ho quasicrystal showing a clear local 5-fold symmetry. (Image
under Creative Commons BY-SA 3.0 licence, source: Wikipedia).

The projected figure constitutes the Penrose tiling of the plane. The corners and the edges of
the lozenges define a lattice in R2. The simple random walk on a given vertex at time n, jumps
with equal probability to a nearest-neighbour (in the graph distance defined by the edges) at
moment n + 1. It is worth noting that in the cut-and-project method, the parameter N can
be chosen arbitrarily large (but finite): some vertices of the lattice can have thus arbitrarily
large coordination number. In spite of that, in [37], results on the heat kernel of the simple
random walk on a Penrose lattice have been obtained; in [10] the random walk is shown to be
generically recurrent for d ≤ 2 and generically transient for d ≥ 3.

Remark also that the trajectories of the random walk can be shown to be in bijection with
the computational trajectories of Turing machine; additionally, they have a natural groupoid
structure but not that of a group. The random walk on the Penrose lattice is isomorphic
to a random walk fitting the iterated function systems with place-dependent probabilities
formalism by choosing A = {±e1, . . . ,±eN}, X = ZN and

pa(x) =

{
1

d(x) if x + a ∈ S
0 otherwise,

where d(x) := ]{b ∈ A : x + b ∈ S}, for all x ∈ S . Since the integer points in the strip
are in bijection with the corners of tiles in E, any trajectory of the random walk in the strip is
bijectively projected to a trajectory on edges of the tiling.

3. Random walks on (semi-)groups
3.1. The “ax + b” group
In [36, 23] problems stemming from random walks in random envrionment have been studied.
It appeared then that a random process (Xn)n∈N on the set X of d-dimensional vectors occurred
naturally. If A is a fixed set of d × d matrices and of d-dimensional vectors, the evolution of
the process consists in choosing randomly a pair a = (m, v) ∈ A (i.e. a pair of a matrix m and
a vector v and define Xn+1 = Sa(Xn) where Sa = mx + v. Obviously, this evolution fits the
general formalism given in the introduction. In case the matrices m and vectors v have positive
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components, the asymptotic behaviour of Xn can be obtained in a more straightforward manner
[22]. Connection of this process with a one-dimensional disordered model of statistical mechanics
has been established in [12], while in [9], the asymptotic behaviour of the model has been
shown be connected with the tail behaviour of the invariant measure of the process (Xn) by
using Mellin transform. Same ideas have been developed in [16, 5], while in [17], a highly non
trivial generalisation to the case of not necessarily positive matrices has been made.

3.2. Random dynamical systems on R+

In [3], we studied systems with A ' Z, X = R+ and Sa(x) = (a + x ± xγ)+ where γ is
some fixed power in (0, 1). When the random variable A ∈ A has moments, nothing very
interesting occurs since the asymptotic behaviour of random dynamical system is governed
by the systematic drift term xγ. An interesting situation occurs when the random variable A
is distributed according to a law having heavy tails, i.e. the distribution of A does not decay
sufficiently fast for large values of |A| for it to have expectation. More precisely, we suppose
that P(|A| > y) � C

yα , with α ∈ (0, 1). A complete characterisation of the type diagram is
obtained exhibiting a competition between the heavy-tail behaviour and the systematic drift,
i.e. we obtain a non trivial type diagram in the (α, γ) plane.

4. Evolution of density matrices under repeated unsharp quantum measurements
The state of a quantum system is described by a density operator, i.e. a positive, trace-class and
unit-trace operator x, acting on a separable Hilbert space H; this set is denoted D(H) and plays
the rle of X in this quantum setting. When the system is isolated, a standard result in quantum
mechanics states that the evolution is through a unitary operator U acting on x by U∗xU.
When a sharp measurement of a quantity Q (represented by a self-adjoint operator acting
on H and supposed — for simplicity — with discrete spectrum in this survey) is performed,
the quantum mechanics postulates establish that the value a occurs with probability tr(xE[a])
where E[a] denotes the spectral measure of Q at a; the family of (E[a])a∈A is a family of
orthogonal orthoprojections. After having obtained a value a ∈ A, the state of the system
evolves irreversibly to a new density operator x′ = Sa(x) = E[a]xE[a]

tr(xE[a]) . In this setting, the
set A can be chosen to be the spectrum of Q and the probability of occurrence of every a is
pa(x) = tr(xE[a]) = tr(E[a]xE[a]) = tr(E[a]∗xE[a]).

Unsharp quantum measurements are families of positive operators (E[a])a∈A, verifying
∑a∈A E[a] = I but the members E[a] of the family are not orthogonal orthoprojections. Since
they are positive however, there exists a family of operators (Z[a]) such that E[a] = Z[a]∗Z[a]
(they are called Kraus operators in the literature). The probability of getting the value a in this
unsharp measurement is pa(x) = tr(xE[a]) = tr(xE[a]) = tr(Z[a]xZ[a]∗) while the state of the
system evolves into the new state x′ = Sa(x) = Z[a]xZ[a]∗

tr(Z[a]xZ[a]∗) . Therefore, this problem also fits the
general formalism introduced above (see [4, 26] for instance) with X = D(H). It is remarkable
that repeated quantum measurements induce a classical Markov chain on the space X = D(H).

In [27], the asymptotic behaviour of the thus induced Markov chain has been obtained
for the case where A is finite while in [25] these results have been extended to the case of
denumerably infinite A.

5. Conclusion and open problems
We have demonstrated that there exists a unified formalism encompassing very diverse
models that have been previously introduced in various areas of physics (statistical mechanics,
disordered media, quantum mechanics, etc.). This formalism puts together mathematical
methods developed somehow separately in the context of dynamical systems and/or Markov
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processes and as such has a very rich mathematical structure. In spite of the vast applicability
of the formalism, very little is known about existence and uniqueness of the invariant measure
for the random dynamical system described by the Markov kernel of equation (1) when the
probabilities (pa)a∈A are genuinely place-dependent and this dependence is not continuous.
This constitutes a challenge in the theoretical understanding of these systems. On the physical
side, the existence of an underlying unified framework can be used to transfer methods
developed ad-hoc in each area to the other. Within every model presented above, only some
partial aspects are understood. We expect that the transfer of methods from one area to the
other will help answering some of the remaining questions.
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