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Abstract. The present paper evaluates the axial strain and stress of a thermo-mechanically 
loaded non-uniform bar by using a numerical method based on a variational principle. The 
solutions are obtained up to the elastic limit of the material based on the assumptions that 
material properties are independent of temperature variation and plane cross-sections remain 
plane maintaining axisymmetry. This approximation is carried out by Galerkin’s principle, 
using a linear combination of sets of orthogonal co-ordinate functions which satisfy prescribed 
boundary conditions. The solution algorithm is implemented with the help of MATLAB® 
computational simulation software. Some numerical results of thermoelastic field are presented 
and discussed for different bar materials such as mild steel, copper, aluminium alloy 6061 (Al 
alloy 6061), aluminium alloy 7075 (Al alloy 7075) and diamond. The effect of geometry 
parameters like aspect ratio, slenderness ratio and the type of taperness is investigated and the 
relevant results are obtained in dimensional form. The term bar used in this paper is in generic 
sense and hence the formulation is applicable for all one dimensional elements, e.g., rods, 
pipes, truss members, etc. 

1. Introduction 
The post-elastic analyses of thermo-mechanically loaded non-uniform bars are important for designing 
mechanical, aerospace and civil structures. The solutions of thermal stress problem available in 
textbook are valid for uniform cross-section bar under uniform temperature field only. In general the 
solution fails because the assumption of equality of thermal and mechanical strains at every point 
within the domain is not true. However, an overall equilibrium of the bar system is achieved by 
balancing forces coming from the strain differentials, existing within the domain. Hence a detail 
analysis of the generalized system yields a different strain field, and subsequently a different stress 
field, which are often much more critical. The simple analytical method also fails when the induced 
thermal stress is in post-elastic region due to insufficiency in capturing the physics of material 
behaviour.  

The solution of thermal stress problems for uniform bar subjected to a uniform temperature is 
found in the textbook of Timoshenko [1]. The prediction of the elasto-plastic behaviour of solid 
slender bars of various types of geometry as well as loading is an interesting area of work for the 
designers (Hill [2]). Niknam et al. [3] studied the non-linear bending of tapered functionally graded 
(FG) beam subjected to thermal and mechanical load with general boundary condition. They presented 
a closed form solution for the classical beam problem and employed Galerkin technique for the general 
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case with axial force. Das et al. [4] presented a simulation study of the dynamic behaviour of non-
uniform taper bars of circular and rectangular cross-section under body force loading due to gravity. 
The loading is controlled statically to take the bar to its post-elastic state so as to predict its dynamic 
behaviour in the presence of plastic deformation. Noda [5] presented an extensive review that covered 
a wide range of topics from thermo-elastic to thermo-inelastic problems. Grysa and Kozlowski [6] 
presented an approximate analytical and exact solution of the problems of heat flux and temperature 
determination on slabs. The interior thermal and mechanical responses are used in determining the 
unknown functions describing heat flux and temperature on the surface of the slab. Nayak and Saha [7] 
investigated the elastic limit speed of non-uniform rotating disks considering thermal effect on 
elasticity modulus. 

The literature review in this area reveals that textbooks address analysis of thermal stress problem 
of uniform cross-section bar under uniform temperature field in elastic domain only and literatures 
explaining non-uniform bars under thermo-mechanical loading are rare. This paper attempts to address 
the thermo-mechanical behaviour of non-uniform bars upto the elastic limit of the material by using a 
numerical method based on variational principle. The effect of geometry parameters like aspect ratio, 
slenderness ratio and the type of taperness on the thermo-elastic performance of the bar is investigated 
and the relevant results are obtained in dimensional form. 

2. Problem formulation 
The present paper employs an energy approach to get the appropriate governing equations for the 
thermo-mechanically loaded non-uniform bars. The formulation is displacement based and the 
unknown displacement field is approximated by finite linear combination of admissible orthogonal 
functions. The mathematical model is framed on the assumption that the material of bar is 
homogeneous, isotropic and linear elastic. It is also assumed that the bar geometry is stub enough to 
exclude buckling failure from the scope of analysis. Further, the analysis is carried out based on the 
assumptions that material properties are independent of temperature variation and plane cross-sections 
remain plane maintaining axisymmetry. However, although the present analysis is carried out for an 
elastic material, extension of the analysis in the elasto-plastic region needs special mention.  

The geometry taken for the present analysis is taper bar of solid circular cross-section with linear 
variation in diameter given by ( ),dddd 100 −−= ξ  where 0d  is the largest diameter and 1d  is the 

smallest diameter of the bar. The diameter of the bar ( )dφ  at any axial location x  is expressed in terms 

of the normalized axial coordinate ( ),Lx=ξ  where L is the total length of the bar. Furthermore, the 
geometry of the bar is defined by the slenderness ratio (ratio of length to radius of gyration 
corresponding to the minimum radius of the bar) and aspect ratio (ratio of difference in radii of two 
ends to length). The mathematical expression of slenderness ratio is given by ( ),rkLS 1R =  where 

( ) 111 AIrk =  is the radius of gyration of the bar, corresponding to the minimum cross-section of the 

bar. The expression for aspect ratio is ( ) .LrrA 10R −=  
Displacement will occur due to thermal expansion resulting in thermal load. The magnitude of this 

displacement field is also governed by the boundary conditions of the bar. The solution for the 
displacement field is obtained from the minimization of total potential energy principle ( ) 0VU =+δ  
where, U  is the strain energy stored in the bar and V  is the potential energy developed by the external 
forces. When the bar material is subjected to a temperature field, it experiences strain due to an 
expansion proportional to the temperature rise T, and the linear constitutive thermoelastic equations 

take the form ,T
E

x
x Δα

σ
ε +=  where xε  is the axial strain, xσ  is stress, E is the modulus of elasticity 

and α  is the coefficient of linear thermal expansion. The total strain energy of the bar comes from the 

stress and strain field, and expressed as ( ) ( ) ( ) ,dxxA
2

1
dv

2

1 L

0
xx

Vol

== εσσεΠ  where ( )xA  is the area of 
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cross-section at location .x  Using the linear-strain displacement relation, ,dx/dux =ε  where u  is the 
axial displacement field, we get 

 ( ){ } ( ) .dxxATuE2uE
2

1 L

0

'2' −= ΔαΠ  (1) 

In equation (1), ')(  indicate first derivative with respect to the coordinate variable. Here Π  is the 
total potential energy in which one part is similar to the strain energy U  stored in the bar and the other 
part is work function due to temperature gradient loading. So, the expression for U  is given by, 

 ( ){ } ( )dxxAuE
2

1
U

L

0

2'=  (2) 

and the expression for potential energy ,V  arising from the thermal loading is given by, 

 { } ( )dxxATuE2
2

1
V

L

0

'−= Δα . (3) 

Substituting equations (2) and (3) in the energy principle ( ) ,0VU =+δ  the governing equilibrium 
equation becomes 

 ( ){ } ( ) .0dxxATuE2uE
2

1 L

0

'2' =− Δαδ  (4) 

Equation (4) is expressed in normalized co-ordinate ξ  to facilitate the numerical computation 
work and the governing equation takes the form 

 ( ){ } ( ) ( ) ( ) .dAuTEdAuu
L

E 1

0

'
1

0

'' ξξδΔαξξδ =  (5) 

The displacement function ( )ξu  in equation (5) is approximated by a linear combination of sets of 

orthogonal coordinate functions as ( ) = iicu φξ , i=1, 2,…, nf, where iφ  is the set of orthogonal 
functions developed through Gram–Schmidt scheme, ic  is the set of unknown coefficients and nf is 

number of functions. The necessary start function 0φ  is given by ( )ξξφ −= 10  which satisfies the 
geometric boundary conditions of the bar which are, i.e. 0u =  at 0=ξ  and 0u =  at .1=ξ  

Now substituting the series approximation of u( ) in Eq. (5) and replacing the operator ‘ ’ 
by n,...,2,1j,c j =∂∂ , according to Galerkin error minimization principle, we obtain the governing 

differential equation in matrix form. 

 ( )( ) { } ( )( )=
= =

1

0

'
ji

n

1i

n

1j

1

0

'
j

'
i dATEcdA

L

E
ξφξΔαξφφξ  (6) 

Solution of equation (6) yields the solution vector { },ci  obtained through a single step matrix 

inversion process. The axial displacement field ( )u  can be found out for any prescribed value of TΔ  
which in turn gives strain and stress fields. The numerical integration, differentiation and all other 
associated mathematical operations are carried out in the computational platform of MATLAB 
software. 

3. Results and discussions 
In this paper, a thermal stress analysis is carried out on a clamped taper bar for different materials such 
as mild steel, copper, Al alloy 6061, Al alloy 7075 and diamond. Mechanical properties of the bar 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012002 doi:10.1088/1742-6596/738/1/012002

3



 
 
 
 
 
 

materials such as elasticity modulus ( )E , Poisson’s ratio ( )ν , coefficient of thermal expansion ( )α and 

yield stress ( )yσ  are listed in table 1.  

The theoretical value of temperature rise at the point of yielding ( Ty) of a taper bar of 1.2 m long, 
having aspect ratio 025.0AR = , and slenderness ratio 20SR =  is given in table 2 for various bar 
materials. Table 2 also furnish the respective melting temperatures (Tm) of the materials. 
 

Table 1. Material properties. 

Bar material E (GPa)   (10-6/°C) y (MPa) 

Mild steel 210 0.3 11.7 350 
Copper 129 0.34 17 211 

Al alloy 6061 69 0.33 23.6 276 
Al alloy 7075 71 0.33 23.4 505 

Diamond 1220 0.2 1.18 60000 
 

Table 2. Temperature rise at yield and melting temperature. 

Material Mild steel Copper Al alloy 6061 Al alloy 7075 Diamond 

Ty (°C) 98.9 66.8 117.7 211.1 28936.9 

Tm (°C) 1427 1085 582 477 - 

 
The dimensionless parameter ,TET yR Δασ=  termed as thermal load resistance, is used to 

characterize the bar material upto the elastic limit. As the values of Ty and Tm are different for 
different materials as shown in table 2, an operating temperature range of (20-120) °C has been 
selected. Such a selection is made because beyond this range, the plot of thermal load resistance 
cannot be significantly represented in a single plot for comparison. The plot of thermal load resistance 
( )TET yR Δασ=  with temperature rise ( )TΔ  is provided in figure 1(a) for mild steel, copper, Al alloy 

6061 and Al alloy 7075 from (20-120) °C. Since the thermal load resistance of diamond is very much 
higher as compared to other bar materials, so a separate figure for diamond is provided (figure 1(b)). 

The stress and strain fields induced in a clamped taper bar for five different materials under three 
different uniform thermal loads ( T=30 °C, 50 °C and 66.8 °C) are shown in figure 2. The geometry 
of the bar is assumed to remain same as before ( 025.0AR = , and 20S R = ). Since the temperature rise 
at yield of copper is the lowest among all materials, so for comparison purpose three temperatures upto 
66.8 °C is considered for all other materials in the present paper. 
 

 

 

 

Figure 1(a) & (b). Variation of thermal load resistance ( )RT  with rise in temperature ( ).TΔ  
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Figure 2. Stress and strain fields induced in different materials as indicated in plots 
I(a,b), II(a,b), III(a,b), IV(a,b) and V(a,b). 
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Although the mathematical formulation and the results of figure 2 refer to uniform temperature field, 
the present analysis can be carried out for various other temperature distributions also. In the present 
study, we consider linear and parabolic temperature distributions and the temperature boundary 
conditions at the largest and smallest ends of the bar are assumed as ( ) 200T = °C and ( ) 100LT = °C 
respectively. The mathematical relations for linear and parabolic temperature distributions are taken as 

( ) ( ) ( ) ( ){ }( )ξξ 0TLT0TT −+=  and ( ) ( ) ( ) ( ){ }( )20TLT0TT ξξ −+= . 
The stress and strain fields induced in a clamped mild steel taper bar for linear and parabolic 

temperature distributions are shown in figure 3 and the plots of elastic, thermal and total strain for 
uniform, linear and parabolic temperature distribution is shown in figure 4. 
 

 

 

 

Figure 3. Stress and strain fields induced under linear and parabolic temperature 
distribution in a clamped mild steel taper bar. 

 

 

 

 

 
Figure 4. Elastic, thermal and total strain induced in a clamped mild steel taper bar for (a) 

uniform, (b) linear and (c) parabolic temperature distribution. 
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The stress and strain field as mentioned here is upto the elastic limit of the bar material. However, the 
present method has the potential of application in structural mechanics problems involving material 
non-linearity. A sample result obtained from the solution of such a problem is given in figure. 5 for the 
mild steel bar, assuming bilinear post-elastic material behaviour. It is observed that the stress and 
strain field remains similar but changes in their pattern becomes more prominent when the bar material 
enters in post-elastic domain with increase in thermal load.  
 

  
Figure 5. Stress and strain fields induced in a clamped mild steel taper bar at and 

above yield temperature. 
 
4. Conclusion 
The investigation of thermoelastic stress and strain fields of clamped taper bar is formulated through a 
variational method for different bar materials. The effect of uniform thermal load on different bar 
materials has been reported. Assuming a series approximation following Galerkin’s principle, the 
solution of the governing partial differential equation is obtained. The solution algorithm is 
implemented with the help of MATLAB computational simulation software. The effect of non-
uniform thermal load and material non-linearity in a clamped mild steel taper bar has also been 
reported. Finally, the paper paves the way towards design optimization, where a uniform stress field is 
sought in the multi-parameter domain of the problem. 
 
References 
 
[1] Timoshenko S 1930 Strength of Materials: Part I Elementary Theory and Problems (New York,  
  D. Van Nostrand Company, Inc). 
[2] Hill R 1950 The Mathematical Theory of Plasticity (Oxford University Press, Oxford). 
[3] Niknam H, Fallah A and Aghdam M M 2014 Nonlinear bending of functionally graded tapered  
  beams subjected to thermal and mechanical loading Int. J. Nonlinear Mech. 65 141-147. 
[4] Das D, Sahoo P and Saha K N 2009 Dynamic analysis of non-uniform taper bars in post-elastic  
  regime under body force loading Appl. Math. Model. 33 4163-4183. 
[5] Noda N 1991 Thermal stress in materials with temperature-dependent properties Appl. Mech.  
  Rev. 44 383-397. 
[6] Grysa K and Kozlowski Z 1982 One dimensional problems of temperature and heat flux  
  determination at the surfaces of a thermoelastic slab: Part I The analytical solutions Nucl.  
  Engrg. Des. 74 1-14. 
[7] Nayak P and Saha K N 2014 Analytical study on elastic limit speed of non-uniform rotating 
  disks considering thermal effect on elasticity modulus Appl. Mech. Mater. 592-594 
  (DMMIR) 1001-1005. 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012002 doi:10.1088/1742-6596/738/1/012002

7




