Applications of Tikhonov regularization to inverse problems using reproducing kernels

To cite this article: Saburou Saitoh 2007 J. Phys.: Conf. Ser. 73 012019

View the article online for updates and enhancements.
Applications of Tikhonov regularization to inverse problems using reproducing kernels

Saburou Saitoh
Department of Mathematics, Faculty of Engineering, Gunma University, Kiryu 376-8515
JAPAN
E-mail: ssaitoh@math.sci.gunma-u.ac.jp; kbdmm360@yahoo.co.jp

Abstract. This paper is a survey article based on our recent papers on inverse problems using Tikhonov regularization and reproducing kernels. Tikhonov regularization is a basically important idea and method in numerical analysis, however, the extremal functions of the Tikhonov functional are commonly represented by using the associated singular values and singular functions for the case of compact operators. So, their representations are restrictive and abstract in a sense. We shall give new representations for the case of general bounded linear operators by using the theory of reproducing kernels and we shall introduce various concrete representations for typical cases. Our representations are both analytical and numerical. We introduce a general theory of the Tikhonov regularization using the theory of reproducing kernels including error estimates and convergence rates. We shall present the general theory and its concrete results for the typical inverse problem for heat conduction with computer graphs (in the cited references) as evidence of the power of our inverse formulas.

1. Reproducing kernels
First we recall a basic relation between linear mappings in the framework of Hilbert spaces and reproducing kernels. In particular, we can see here why we meet ill-posed problems, indeed, we can see the idea and method for the avoidance of the ill-posed problems in the framework of Hilbert spaces. However, this will be a mathematical theory and for the purpose of developing numerical methods, we will need the idea of Tikhonov regularization discussed in Section 5. However we will need essentially the applications of the theory of reproducing kernels to both mathematical and numerical theories for bounded linear operators in the framework of Hilbert spaces. See [5] for a general elementary theory of inverse problems and ill-posed problems.

We consider any positive matrix $K(p, q)$ on a fixed set E; that is, for an abstract set E the complex–valued function $K(p, q)$ on $E \times E$ satisfies, for any finite points $\{p_j\}$ of E and for any complex numbers $\{C_j\}$,

$$\sum_j \sum_{j'} C_j \overline{C_{j'}} K(p_{j'}, p_j) \geq 0.$$

Then, by the fundamental theorem by Moore–Aronszajn, we have:

Proposition 1.1 ([1]) For any positive matrix $K(p, q)$ on E, there exists a uniquely determined functional Hilbert space (abbreviated RKHS) H_K comprising functions $\{f\}$ on E and admitting...
the reproducing kernel \(K(p, q) \) satisfying and characterized by

\[
K(\cdot, q) \in H_K \text{ for any } q \in E
\]

and, for any \(q \in E \) and for any \(f \in H_K \)

\[
f(q) = (f(\cdot), K(\cdot, q))_{H_K}.
\]

For some general properties of reproducing kernel Hilbert spaces and for various constructions
of the RKHS \(H_K \) from a positive matrix \(K(p, q) \), see the recent book [23] and its Chapter 2, Section 5, respectively.

2. Connections with linear mappings

Let us connect linear mappings in the framework of Hilbert spaces with reproducing kernels ([19]).

For an abstract set \(E \) and for any Hilbert (possibly finite–dimensional) space \(\mathcal{H} \), we shall consider an \(\mathcal{H} \)–valued function \(h \) on \(E \)

\[
h : \quad E \longrightarrow \mathcal{H}
\]

and the linear mapping from \(\mathcal{H} \) into a linear space comprising functions on \(E \), given by \(f \longrightarrow f \),

\[
f(p) = (f, h(p))_{\mathcal{H}} \quad \text{for} \quad f \in \mathcal{H}.
\]

This represents, in particular, the Fredholm integral equations of the first kind in the framework of Hilbert spaces.

For this linear mapping (4), we form the positive matrix \(K(p, q) \) on \(E \) defined by

\[
K(p, q) = (h(q), h(p))_{\mathcal{H}} \quad \text{on} \quad E \times E,
\]

which is, by Proposition 1.1, a reproducing kernel.

Then, we have the following fundamental results:

(I) For the RKHS \(H_K \) admitting the reproducing kernel \(K(p, q) \) defined by (5), the images \(\{ f(p) \} \) by (4) for \(\mathcal{H} \) are characterized as the members of the RKHS \(H_K \).

(II) In general, we have the inequality in (4)

\[
\| f \|_{H_K} \leq \| f \|_{\mathcal{H}},
\]

however, for any \(f \in H_K \) there exists a uniquely determined \(f^* \in \mathcal{H} \) satisfying

\[
f(p) = (f^*, h(p))_{\mathcal{H}} \quad \text{on} \quad E
\]

and

\[
\| f \|_{H_K} = \| f^* \|_{\mathcal{H}}.
\]

In (6), the isometry holds if and only if \(\{ h(p); p \in E \} \) is complete in \(\mathcal{H} \).

(III) We can obtain the inversion formula for (4) in the form

\[
f \longrightarrow f^*,
\]
by using the RKHS H_K.

However, this inversion formula will depend on, case by case, the realizations of the RKHS H_K.

(IV) Conversely, if we have an isometric mapping \tilde{L} from the RKHS H_K admitting a reproducing kernel $K(p, q)$ on E onto a Hilbert space \mathcal{H}, then the mapping is linear and its isometric inversion \tilde{L}^{-1} is represented in the form (4). Here, the Hilbert space \mathcal{H}–valued function h satisfying (3) and (4) is given by

$$h(p) = \tilde{L}K(\cdot, p) \text{ on } E$$

(10)

and, $\{h(p) : p \in E\}$ is complete in \mathcal{H}.

When (4) is isometrical, sometimes we can use the isometric mapping for a realization of the RKHS H_K, conversely — that is, if the inverse L^{-1} of the linear mapping (4) is known, then we have $\|f\|_{H_K} = \|L^{-1}f\|_{\mathcal{H}}$.

3. General applications

We shall state some general applications of the results (I)~(IV) to several wide subjects and their basic references:

(1) Linear mappings ([21],[23]).

The fact that the image spaces of linear mappings in the framework of Hilbert spaces are characterized as reproducing kernel Hilbert spaces defined by (5) is the most important one in the general theory of reproducing kernels. This means that the theory of reproducing kernels is fundamental and a general concept in mathematics. To look for the characterization of the image space is a starting point when we consider the linear equation (4). (II) gives a generalization of the Pythagorean theorem (see also [18]) and means that in the general linear mapping (4) there exists essentially an isometric identity between the input and the output. (III) gives a generalized (natural) inverse (solution) of the linear mapping (equation) (4). (IV) gives a general method determining and constructing the linear system from an isometric relation between outputs and inputs by using the reproducing kernel in the output space.

(2) Linear mappings among smooth functions ([28]).

We considered linear mappings in the framework of Hilbert spaces, however, we can consider linear mappings in the framework of Hilbert spaces comprising smooth functions, similarly. Conversely, reproducing kernel Hilbert spaces are considered as the images of some Hilbert spaces by considering some decomposed representations (5) of the reproducing kernels. Such decomposition is, in general, possible. This idea is important in [29] and also in the following items (6) and (7).

(3) Nonharmonic linear mappings ([21]).

If the linear system vectors $h(p)$ move in a small way (perturbation of the linear systems) in the Hilbert space \mathcal{H}, then we can not calculate the related positive matrix (5), however, we can discuss the inversion formula and an isometric identity of the linear mapping. The prototype result is the Paley-Wiener theorem on nonharmonic Fourier series.

(4) Various norm inequalities ([24],[26]).

Relations among positive matrices correspond to those of the associated reproducing kernel Hilbert spaces, by the minimum principle. So, we can derive various norm inequalities among reproducing kernel Hilbert spaces from relations among positive matrices. We were able to derive many beautiful norm inequalities.
(5) Nonlinear mappings ([24],[26]).
In a very general nonlinear mapping of a reproducing kernel Hilbert space, we can look for a natural reproducing kernel Hilbert space containing the image space and furthermore, we can derive a natural norm inequality in the nonlinear mapping. What is a basic relation between linear mappings and non-linear mappings in the framework of reproducing kernel Hilbert spaces? It seems that the theory of reproducing kernels gives a fundamental and interesting answer for this question.

(6) Linear (singular) integral equations ([9],[29]).
We can apply our general theory to various integral equations containing Volterra type in the framework of Hilbert spaces.

(7) Linear differential equations with variable coefficients ([29],[32]).
In linear integro-differential equations with general variable coefficients, we can discuss the existence and construction of the solutions, if the solutions exist. This background method is called a backward transformation method and by reducing the equations to Fredholm integral equations of the first kind and we can discuss the classical solutions, in very general linear equations.

(8) Approximation theory ([3],[23]).
Reproducing kernel Hilbert spaces are very nice function spaces, because the point evaluations are continuous. Therefore, reproducing kernels are a fundamental tool in the related approximation theory. See also Section 4.

(9) Representations of inverse functions ([23],[25]).
For any mapping, we discussed the problem of representing its inverse in terms of the direct mapping and we derived a unified method for this problem. As a simple example, we can represent the Taylor coefficients of the inverse of the Riemann mapping function on the unit disc on the complex plane in terms of the Riemann mapping function. This fact was important in the representation of analytic functions in terms of local data in ([30]).

(10) Various operators among Hilbert spaces ([27]).
Among various abstract Hilbert spaces, we can introduce various operators of sum, product, integral and derivative by using the linear mapping or very general nonlinear mappings. The prototype operator is convolution and we discussed it from a wide and general viewpoint with concrete examples.

(11) Sampling theorems ([23], Chapter 4, Section 2).
The Whittaker-Kotel’nikov-Shannon sampling theorem may be interpreted by (I) and (II) very well, and we can discuss the truncation errors in the sampling theory. J. R. Higgins [7] established a fully general theory for [23]. See also, Section 7, as its essence.

(12) Interpolation problems of Pick-Nevanlinna type ([21],[22]).
General and abstract theory of interpolation problems of Pick-Nevanlinna type may be discussed by using the general theory of reproducing kernels.

(13) Analytic extension formulas and their applications ([6],[30]).
We were able to obtain various analytic extension formulas and their applications from various isometric identities (II). For their applications to nonlinear partial differential equations, see the survey article by N. Hayashi [6].

(14) Inversions of a family of bounded linear operators on a Hilbert space into various Hilbert spaces ([31]).
From fully general theorems for the Pythagorean theorem, we derived the concept of inversions of a family of bounded linear operators on a Hilbert space into various Hilbert spaces.
4. Best approximation problems

We shall consider the fundamental and well-known best approximation problem

\[\inf_{f \in H_K} \| Lf - d \|_H \tag{11} \]

for a vector \(d \) in \(H \) where \(L : H_K \rightarrow H \) is a bounded linear operator. Then, we have, by our theory in Section 2

Proposition 4.1 ([3],[23]) *For a vector \(d \) in \(H \), there exists a function \(\tilde{f} \) in \(H_K \) such that*

\[\inf_{f \in H_K} \| Lf - d \|_H = \| L\tilde{f} - d \|_H \tag{12} \]

if and only if, for the RKHS \(H_k \) admitting the reproducing kernel defined by

\[k(p, q) = (L^*LK(\cdot, q), L^*LK(\cdot, p))_{H_K}, \tag{13} \]

\[L^*d \in H_k. \tag{14} \]

Furthermore, if the best approximation \(\tilde{f} \) satisfying (12) exists, then there exists a unique extremal function \(f_d \) with the minimum norm in \(H_K \), and the function \(f_d \) is expressible in the form

\[f_d(p) = (L^*d, L^*LK(\cdot, p))_{H_k} \text{ on } E. \tag{15} \]

In Proposition 4.1, note that

\[(L^*d)(p) = (L^*d, K(\cdot, p))_{H_K} = (d, LK(\cdot, p))_H; \tag{16} \]

that is, \(L^*d \) is expressible in terms of the known \(d, L, K(p, q) \) and \(H \).

This representation will, in particular, show that for bounded linear operators on a Hilbert space, if the Hilbert space admits a reproducing kernel, then the representations of their adjoint operators are concretely given. This fact will be important for general bounded linear operator theory.

\(f_d \) in (15) is the Moore-Penrose generalized inverse solution \(L^\dagger d \) of the equation \(Lf = d \). Therefore, Proposition 4.1 gives a necessary and sufficient condition for the existence of the Moore-Penrose generalized inverse. Proposition 4.1 is rigid and is not useful in practical applications, because, practical data contain noise or errors and the criteria (14) is not suitable. So, we shall consider the Tikhonov regularization and we shall establish a good relation between the Tikhonov regularization and the theory of reproducing kernels.

5. Spectral theory

In order to discuss operator equations for general bounded linear operators \(L \), following [4] we shall fix the well-established theory among spectral theory, the Moore-Penrose generalized inverse and the Tikhonov regularization. See [5] for the corresponding results for compact operators \(L \).

Let \(\{E_\lambda\} \) be a spectral family for the self-adjoint operator \(L^*L \). If \(L^*L \) is continuously invertible, then

\[(L^*L)^{-1} = \int \frac{1}{\lambda} dE_\lambda. \]

In this case, the Moore-Penrose generalized inverse (15) can be represented by the Gaussian normal equation

\[f_d(p) = \int \frac{1}{\lambda} dE_\lambda L^*d. \tag{17} \]
If $R(L)$ is non-closed and $d \not\in D(L^*)$, i.e. if the equation $Lf = d$ is ill-posed, then the integral in (17) does not exist. Then, we shall define

$$f_{d,\alpha}(p) = \int \frac{1}{\lambda + \alpha} dE_\lambda L^*d.$$ (18)

By construction, the operator on the right-hand side of (18) acting on d is continuous, so that, for noisy data d^δ with $\|d - d^\delta\|_H \leq \delta$, we can bound the error between $f_{d,\alpha}$ and

$$f_{d,\alpha}^\delta(p) = \int \frac{1}{\lambda + \alpha} dE_\lambda L^*d^\delta$$ (19)

as follows:

Proposition 5.1 ([4], pages 71-73) For any $d \in D(L^*)$,

$$\lim_{\alpha \to 0} (L^*L + \alpha I)^{-1}L^*d = \lim_{\alpha \to 0} f_{d,\alpha} = f_d.$$ (20)

Furthermore,

$$\|Lf_{d,\alpha} - Lf_{d,\alpha}^\delta\|_H \leq \delta$$ (21)

and

$$\|f_{d,\alpha} - f_{d,\alpha}^\delta\|_{HK} \leq \frac{\delta}{\sqrt{\alpha}}.$$ (22)

Proposition 5.2 ([4], pages 117-118) For any $d^\delta \in D(L^*)$ with $\|d - d^\delta\|_H \leq \delta$, the function $f_{d,\alpha}^\delta$ defined by (19) is the unique minimizer of the Tikhonov functional

$$\inf_{f \in HK} \{\alpha \|f\|_{HK}^2 + \|d^\delta - Lf\|_H^2\}.$$ (23)

If $\alpha = \alpha(\delta)$ is such that

$$\lim_{\delta \to 0} \alpha(\delta) = 0$$

and

$$\lim_{\delta \to 0} \frac{\delta^2}{\alpha(\delta)} = 0,$$

then

$$\lim_{\delta \to 0} f_{d,\alpha}^\delta = f_d = L^*(d).$$ (24)

These results are important, because real physical data contain error and noises.

6. **Representation of the extremal functions in Tikhonov regularization**

Our main purpose here is to give an effective representation of the extremal function $f_{d,\alpha}$ or $f_{d,\alpha}^\delta$ in the Tikhonov regularization, since the representation by spectral theory is abstract, in many practical problems.

We set

$$K_L(\cdot, p; \alpha) = (L^*L + \alpha I)^{-1}K(\cdot, p).$$

Then, by introducing the inner product, for any fixed positive $\alpha > 0$

$$(f, g)_{HK(L; \alpha)} = \alpha(f, g)_{HK} + (Lf, Lg)_H,$$ (25)

we shall construct the Hilbert space $HK(L; \alpha)$ comprising functions of HK. This space, of course, admits a reproducing kernel. Furthermore, we obtain
Proposition 6.1 ([33]) The extremal function $f_{d,\alpha}(p)$ in the Tikhonov regularization
\[
\inf_{f \in H_K} \{ \alpha \| f \|^2_{H_K} + \| d - Lf \|^2_{H} \}
\]
(26)
is represented in terms of the kernel $K_L(p,q;\alpha)$ as follows:
\[
f_{d,\alpha}(p) = (d, LK_L(\cdot, p;\alpha))_H
\]
(27)
where the kernel $K_L(p,q;\alpha)$ is the reproducing kernel for the Hilbert space $H_K(L;\alpha)$ and it is determined as the unique solution $\tilde{K}(p,q;\alpha)$ of the equation:
\[
\tilde{K}(p,q;\alpha) + \frac{1}{\alpha}(L\tilde{K}_q, LK_p)_H = \frac{1}{\alpha}K(p,q)
\]
(28)
with
\[
\tilde{K}_q = \tilde{K}(\cdot, q;\alpha) \in H_K \quad \text{for} \quad q \in E,
\]
(29)
and
\[
K_p = K(\cdot, p) \in H_K \quad \text{for} \quad p \in E.
\]

In (27), when d contains error or noises, we need its error estimate. For this, we can obtain the general result:

Proposition 6.2 ([9],[17]). In (27), we obtain the estimate
\[
|f_{d,\alpha}(p)| \leq \frac{1}{\sqrt{\alpha}} \sqrt{K(p,p)} \| d \|_H.
\]

Propositions 6.1 and 6.2 will show the importance to consider bounded linear operators on a Hilbert space which admits a reproducing kernel. For many concrete applications of these general theorems, see, for example, [2,9,11-17,32-35].

7. A typical example for the inversion of the heat conduction
We shall give simple approximate real inversion formulas for the Gaussian convolution (the Weierstrass transform)
\[
u_F(x,t) = (L_tF)(x) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} F(\xi) \exp \left\{ -\frac{|\xi - x|^2}{4t} \right\} d\xi
\]
(30)
for the functions of $L_2(\mathbb{R}^n)$. This integral transform which represents the solution $u(x,t)$ of the heat equation
\[
u_t(x,t) = \nu_{xx}(x,t) \quad \text{on} \quad \mathbb{R}^n \times \{ t > 0 \}
\]
satisfying the initial condition
\[
u(x,0) = F(x) \quad \text{on} \quad \mathbb{R}^n,
\]
is very fundamental and has many applications to mathematical sciences. See the recent article [39] and its references for its many significant applications to medical science and physics.

Over twenty years ago, in the one dimensional case $n = 1$, the author [20] gave a surprise characterization of the image $u_F(x,t)$ of (30) for $L_2(\mathbb{R}) = L_2(\mathbb{R}, dx)$ functions in terms of an analytic function and established a very simple complex inversion formula following the idea (1).
The paper created a new method and many applications to general integral transforms in the framework of Hilbert spaces and analytic extension formulas. See, for example [2] and [23], and their many references. However, in particular, its real inversion formulas are very involved, for example, recall that:

For a bounded and continuous function $F(x)$ and for $t = 1$, for the differential operator $D = \frac{d}{dx} \quad e^{-D^2}[(L_1 F)(x)] = F(x)$ pointwisely on \mathbb{R} ([8], p. 182). So, one might think that its real inversion formulas will be essentially involved for catching "analyticity" in terms of the data on the real line as in the real inversion formulas of the Laplace transform. See also [10] for a recent related article.

Indeed, this inverse problem is very famous as a typical ill-posed problem that is very difficult. In those papers [33,15], however we were able to obtain simple and practical approximate real inversion formulas by the method in Section 6 using the Sobolev reproducing Hilbert spaces. Furthermore, we illustrated their numerical experiments by using computers and we can realize that we were able to obtain practical real inversion formulas.

In [17], we applied the Paley-Wiener spaces as the reproducing kernel Hilbert spaces in the above theory and we got an improved numerical inversion.

At first we shall fix notations and basic results in the Paley-Wiener spaces following the book by F. Stenger[38] and at the same time we shall show the basic relation of the sampling theory and the theory of reproducing kernels.

We shall consider the integral transform, for $L_2(\mathbb{R}^n, (-\pi/h, +\pi/h)^n), (h > 0)$ functions g

$$f(z) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \chi_h(t)g(t)e^{-iz\cdot t}dt.$$ \hspace{1cm} (31)

Here, $z = (z_1, z_2, ..., z_n), t = (t_1, t_2, ..., t_n), dt = dt_1 \cdot dt_2 \cdot \cdot \cdot dt_n, z \cdot t = z_1t_1 + \cdot \cdot \cdot + z_nt_n$ and

$$\chi_h(t) = \Pi_{\nu=1}^n \chi(t_\nu, (-\pi/h, +\pi/h)),$$

the characteristic function χ of $(-\pi/h, +\pi/h)$. In order to identify the image space following the idea (1), we form the reproducing kernel

$$K_h(z, \pi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \chi_h(t)e^{-iz\cdot t}e^{-iu\cdot t}dt$$

$$= \Pi_{\nu=1}^n \frac{1}{\pi(z_\nu - \pi_\nu)} \sin \frac{\pi}{h}(z_\nu - \pi_\nu).$$ \hspace{1cm} (32)

The image space of (31) is called the Paley-Wiener space $W(\frac{\pi}{h}) (:= W_h)$ comprised of all analytic functions of exponential type satisfying, for each ν, for some constant C_ν and as $z_\nu \to \infty$

$$|f(z_1, ..., z_\nu, z_{\nu+1}, ..., z_n)| \leq C_\nu \exp \left(\frac{\pi |z_\nu|}{h} \right)$$

and

$$\int_{\mathbb{R}^n} |f(x)|^2dx < \infty.$$

From the identity, for multi-index $j = (j_1, j_2, ..., j_n) \in \mathbb{Z}^n$

$$K_h(jh, j'h) = \Pi_{\nu=1}^n \frac{1}{h} \delta(j_\nu, j'_\nu)$$

where δ is the Kronecker delta.
(the Kronecker’s \(\delta \)), for each \(\nu \), since \(\delta(j_\nu, j_\nu') \) is the reproducing kernel for the Hilbert space \(\ell^2 \), from (II) and the Parseval’s identity we have the isometric identities in (31)

\[
\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} |g(t)|^2 dt = h^n \sum_j |f(jh)|^2 = \int_{\mathbb{R}^n} |f(x)|^2 dx.
\]

That is, the reproducing kernel Hilbert space \(H_{K_h} \) with \(K_h(z, \pi) \) is characterized as a space comprising the Paley-Wiener space \(W_h \) and with the norms above in the both senses of discrete and continuous versions. Here we used the well-known result that \(\{j_\nu\} \) is a uniqueness set for the Paley-Wiener space \(W_h \); that is, \(f(jh) = 0 \) for all \(j \) implies \(f \equiv 0 \). Then, the reproducing property of \(K_h(z, \pi) \) states

\[
f(x) = (f(\cdot), K_h(\cdot, x))_{H_{K_h}} = h^n \sum_j f(jh) K_h(jh, x)
\]

\[
= \int_{\mathbb{R}^n} f(\xi) K_h(\xi, x) d\xi,
\]

in particular, on the real space \(x \). This representation is the sampling theorem which represents the whole data \(f(x) \) in terms of the discrete data \(\{f(jh)\} \). For a general theory of sampling and error estimates for some finite points \(\{h_j\} \), see [7] and [23].

Following our general theory, we can obtain the concrete results:

Proposition 7.1 ([17]) For any function \(g \in L_2(\mathbb{R}^n) \) and for any \(\lambda > 0 \), the best approximate function \(F_{t, \lambda, h, g}^* \) in the sense

\[
\inf_{F \in H_{K_h}} \left\{ \lambda \|F\|_{H_{K_h}}^2 + \|g - u_F(\cdot, t)\|_{L_2(\mathbb{R}^n)}^2 \right\}
\]

\[
= \lambda \|F_{t, \lambda, h, g}^*\|_{H_{K_h}}^2 + \|g - u_{F_{t, \lambda, h, g}^*}(\cdot, t)\|_{L_2(\mathbb{R}^n)}^2
\]

exists uniquely and \(F_{t, \lambda, h, g}^* \) is represented by

\[
F_{t, \lambda, h, g}^*(x) = \int_{\mathbb{R}^n} g(\xi) Q_{t, \lambda, h}(\xi - x) d\xi
\]

for

\[
Q_{t, \lambda, h}(\xi - x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\chi_h(p)e^{-ip(\xi-\cdot)} dp}{\lambda e^{\frac{|p|^2 t}} + e^{-|p|^2 t}}.
\]

If, for \(F \in H_{K_h} \) we consider the output \(u_F(x, t) \) and we take \(u_F(\xi, t) \) as \(g \), then we have the result: as \(\lambda \to 0 \)

\[
F_{t, \lambda, h, g}^* \to F,
\]

uniformly.

Here we note the fact that for the Sobolev space case, for \(\lambda = 0 \) the corresponding representation (34) does not exist ([33],[15]), meanwhile for the Paley-Wiener space \(W(\mathbb{R}) \) case of (34), for \(\lambda = 0 \) the representation (34) is still valid; that is, in Proposition 7.1, the result is valid for even \(\lambda = 0 \). Hence, we can consider the results for \(\lambda = 0 \) in the spirit of Tikhonov
regularization in which we are interested in a small λ or λ tending to zero. That is, when we use the Paley-Wiener space $W(\frac{\pi}{h})$, we need not to consider the Tikhonov regularization. Then,

$$(L_tF^*_{t,0,h,g})(x) = (g(\cdot), K_h(\cdot,x))_{L_2(R^n)}$$

as we see from (32). Since the output is the orthogonal projection of g onto the Paley-Wiener space $W(\frac{\pi}{h})$, we can estimate the difference of the output of our inverse $F^*_{t,0,h,g}$ and g, clearly as

$$\|L_tF^*_{t,0,h,g} - g\|_{L_2(R^n)}$$

which is the distance from g onto the Paley-Wiener space $W(\frac{\pi}{h})$. Of course, $F^*_{t,0,h,g}$ is the Moore-Penrose generalized inverse of the operator equation, for any $g \in L_2(R)$ and $F \in W(\frac{\pi}{h})$,

$$L_tF = g.$$

For the Paley-Wiener space $W(\frac{\pi}{h})$, we need not use Tikhonov regularization and we can look for the Moore-Penrose generalized inverse $F^*_{t,0,h,g}$ by using the theory of reproducing kernels ([23], pp. 178-180). However, we had better to calculate the extremal functions $F^*_{t,\lambda,h,g}$ in the Tikhonov regularization and to set $\lambda = 0$, because the structure of the Moore-Penrose generalized inverses is involved.

We consider the heat conduction for the RKHS H_K, however, our inversion formula in the sense (33) will show that for a very general function containing the delta function, our inversion formula is valid, because we are considering the approximate inversion by the functions H_K.

Meanwhile, we are interested in the convergence property of the extremal functions (34) when h tends to zero for a general g.

However, we can see directly that in (34)

$$\lim_{h \to 0} (L_tF^*_{t,0,h,g})(x) = g(x)$$

at the points x where $g(x)$ is continuous.

We are interested in numerical experiments for the both cases of the Sobolev space H_S and the Paley-Wiener space $W(\frac{\pi}{h})$ for their convergences as $\lambda \to 0$ and $h \to 0$. For the Sobolev spaces and $\lambda \to 0$, see [15].

The real inversion formula (34) will give a practical formula for the Gaussian convolution. In [17], we have shown experimental results by using computers in Figures. In [15], we stated that when we use the Sobolev spaces as the reproducing kernels, we will see that in order to overcome the high "ill-posedness" in the real inversion and in order to catch "analyticity" of the image of (30) we must work hardly; that is, we must take a very small λ and we must calculate the corresponding integral (34) hardly in the sense of numerical. Computers help us this hard work to calculate the integral for a very small λ. However, when we use the Paley-Wiener spaces for $\lambda = 0$ and for h tending to 0, we can obtain a very simple and improved inversion formula.

For any $\lambda > 0$ and any $t > 0$, we shall define a linear mapping

$$M_{t,\lambda,h} : L_2(R^n) \to H_{K_h}$$

by $M_{t,\lambda,h}(g) = F^*_{t,\lambda,h,g}$. Now, we consider the composite operators $L_t M_{t,\lambda,h}$ and $M_{t,\lambda,h} L_t$. Using Fourier’s integrals it can be shown that for $F \in H_{K_h}$,

$$(M_{t,\lambda,h} L_t F)(x) = \frac{1}{(2\pi)^n} \int_{R^n} \left\{ F(\xi) \right\} \cdot \int_{R^n} \frac{\chi_h(p)e^{-ip(\xi-x)}}{\lambda e^{2|p|^2t} + 1} \, dp \, d\xi$$

(36)
and for \(g \in L_2(\mathbb{R}^n) \),

\[
(L_t M_{t, \lambda, h} g)(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} g(\xi) \left[\chi_h(p) e^{-ip \cdot (\xi - x)} \frac{\lambda e^{2|p|^2 t}}{|p|^2 t + 1} \right] dp \right] d\xi.
\]

(37)

Setting

\[
\Delta_{t, \lambda, h}(x - \xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \chi_h(p) e^{-ip \cdot (\xi - x)} dp
\]
in (36) and (37), we have

\[
(M_{t, \lambda, h} L_t F)(x) = \int_{\mathbb{R}^n} F(\xi) \Delta_{t, \lambda, h}(x - \xi) d\xi, \quad (F \in H_{K_h})
\]

(38)

and

\[
(L_t M_{t, \lambda, h} g)(x) = \int_{\mathbb{R}^n} g(\xi) \Delta_{t, \lambda, h}(x - \xi) d\xi, \quad (g \in L_2(\mathbb{R}^n)).
\]

(39)

Then we obtain that

\[
\lim_{h \to 0} \Delta_{t, 0, h}(x - \xi) = \delta(x - \xi),
\]

(40)

\[
\lim_{h \to 0} M_{t, 0, h} L_t = I
\]

(41)

and

\[
\lim_{h \to 0} L_t M_{t, 0, h} = I.
\]

(42)

The precise meanings of (41) and (42) are given as follows:

\[
\lim_{h \to 0} (M_{t, 0, h} L_t F)(x) = F(x)
\]

\[
\lim_{h \to 0} L_t M_{t, 0, h} g = g
\]

(43)

at the points where \(F \) and \(g \) are continuous.

Acknowledgments

Supported by the Grant-in-Aid for the Scientific Research (C)(2) (No. 16540137) from the Japan Society for the Promotion Science and by the Mitsubishi Foundation, the 36th, Natural Sciences, No. 20 (2005-2006). The author wishes to express his deep thanks to the referees who gave valuable suggestions on the representation of the paper.

References

[17] Saitoh S 1983 Applicable Analysis. 16 1–6

[29] Saitoh S 2004 Applicable Analysis. 83 727–33

[34] Stenger F 1993 Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics 20