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Uniqueness and numerical methods in inverse

obstacle scattering

Rainer Kress
Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083
Göttingen, Germany

E-mail: kress@math.uni-goettingen.de

Abstract. The inverse problem we consider in this tutorial is to determine the shape of an
obstacle from the knowledge of the far field pattern for scattering of time-harmonic plane waves.
In the first part we will concentrate on the issue of uniqueness, i.e., we will investigate under what
conditions an obstacle and its boundary condition can be identified from a knowledge of its far
field pattern for incident plane waves. We will review some classical and some recent results and
draw attention to open problems. In the second part we will survey on numerical methods for
solving inverse obstacle scattering problems. Roughly speaking, these methods can be classified
into three groups. Iterative methods interpret the inverse obstacle scattering problem as a
nonlinear ill-posed operator equation and apply iterative schemes such as regularized Newton
methods, Landweber iterations or conjugate gradient methods for its solution. Decomposition
methods, in principle, separate the inverse scattering problem into an ill-posed linear problem
to reconstruct the scattered wave from its far field and the subsequent determination of the
boundary of the scatterer from the boundary condition. Finally, the third group consists of
the more recently developed sampling methods. These are based on the numerical evaluation
of criteria in terms of indicator functions that decide whether a point lies inside or outside the
scatterer. The tutorial will give a survey by describing one or two representatives of each group
including a discussion on the various advantages and disadvantages.

1. Introduction
The propagation of acoustic waves in a homogeneous isotropic medium with constant speed of
sound c is governed by the wave equation

∆U =
1
c2

∂2U

∂t2

for the velocity potential U . For time-harmonic waves with frequency ω the time dependence is
factored out in the form

U(x, t) = Re
{
u(x)e−iωt

}

leading to the Helmholtz equation
∆u + k2u = 0

for the space dependent part u with positive wave number k = ω/c. The scattering of an incident
wave ui by an obstacle D, that is, a bounded domain D ⊂ IR3 with a connected complement, is
modelled by an exterior boundary value problem

∆us + k2us = 0 in IR3 \ D̄ (1.1)
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for the scattered wave subject to a boundary condition

B(ui + us) = 0 on ∂D (1.2)

and the Sommerfeld radiation condition

∂us

∂r
− ikus = o

(
1
r

)
, r = |x| → ∞, (1.3)

uniformly for all directions. The total wave u is obtained via superposition u = ui + us and, for
most of this tutorial we assume the incident wave to be a plane wave, that is,

ui(x, d) = eik x·d

where the unit vector d is the direction of propagation. The most frequently occurring boundary
conditions are the Dirichlet boundary condition

B(u) := u

for a sound-soft scatterer and the impedance boundary condition

B(u) :=
∂u

∂ν
+ ikλu

with the exterior unit normal vector ν to ∂D and some impedance function λ ≥ 0 on ∂D. Note
that the Neumann boundary condition for sound-hard scatterers is included as the case where
λ = 0. For simplicity, throughout the tutorial we assume that the boundary ∂D of the scatterer
D is C2 smooth.

The Sommerfeld radiation condition characterizes outgoing waves and ensures uniqueness
for the obstacle scattering problem for both of the above boundary conditions (see [7]). For
brevity, solutions us to the Helmholtz equation that satisfy the Sommerfeld radiation condition
are called radiating solutions. They can be shown to have an asymptotic behavior of the form

us(x) =
eik|x|

|x|
{

u∞ (x̂) + O

(
1
|x|

)}
, |x| → ∞, x̂ :=

x

|x| , (1.4)

uniformly with respect to all directions. The function u∞ is known as the far field pattern of the
scattered wave and is an analytic function of x̂ on the unit sphere Ω := {x ∈ IR3 : |x| = 1}. As
one of the most important tools in scattering theory, Rellich’s lemma (see Theorem 2.13 in [7])
provides a one-to-one correspondence between a radiating solution us to the Helmholtz equation
and its far field pattern u∞ in the sense that u∞ = 0 on Ω (or on an open subset of Ω) implies
that us = 0 in its domain of definition.

The inverse scattering problem that we are concerned with is to determine the shape and
location of the scatterer D from a knowledge of the far field pattern u∞ for one or several
incident plane waves. We note that this inverse problem is nonlinear in the sense that the
scattered wave depends nonlinearly on the scatterer D. More importantly, it is ill-posed since
the determination of D does not depend continuously on the far field pattern in any reasonable
norm. This issue of ill-posedness will be handled using standard regularization techniques, e.g.,
Tikhonov regularization (see [7]).

We illustrate the nonlinearity and ill-posedness of the inverse obstacle scattering problem by
looking at a simple example. For this we consider as incident field the entire solution vi to the
Helmholtz equation given by

vi(x) =
sin k|x|
|x| , x ∈ IR3. (1.5)
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Because of
sin k|x|
|x| =

k

4π

∫

Ω
eik x·d ds(d), x ∈ IR3,

the field vi is a Herglotz wave function (see [7]), i.e., a superposition of plane waves. For D a
sound-soft ball of radius R centered at the origin the scattered wave is given by

vs(x) = −sin kR

eikR

eik|x|

|x| , |x| ≥ R. (1.6)

This leads to the total field

v(x) =
1

|x|eikR
sin k(|x| −R), |x| ≥ R, (1.7)

and the far field pattern

v∞(x̂) = −sin kR

eikR
, x̂ ∈ Ω. (1.8)

Therefore, given the a priori information that the scatterer is a ball centered at the origin, (1.8)
provides a nonlinear equation for determining the radius R.

Concerning the ill-posedness we consider a perturbed far field pattern

vδ
∞(x̂) = −sin kR

eikR
+ δYn(x̂)

with some δ ∈ IR and a spherical harmonic Yn of degree n. Then, in view of the asymptotic
behavior of the spherical Hankel functions for large argument, the corresponding total field is
given in terms of an outgoing spherical wave function

vδ(x) =
sin k(|x| −R)

eikR |x| + δ k in+1 h(1)
n (k|x|)Yn

(
x

|x|
)

with the spherical Hankel function h
(1)
n of order n and of the first kind (see Section 2.4 in [7]).

This implies

vδ(x) = δ k in+1 h(1)
n (kR)Yn

(
x

|x|
)

, |x| = R,

and consequently, by the asymptotics of the spherical Hankel functions for larger order, it follows
that

|vδ(x)| ≈ δ k

(
2n

ekR

)n

Yn

(
x

|x|
)

, |x| = R.

This illustrates that small changes in the data v∞ can cause large errors in the solution of the
inverse problem, or a solution even may not exist anymore since vδ may fail to have a closed
surface as zero level surface.

The above inverse problem serves as a model problem for analyzing inverse scattering
techniques in nondestructive evaluation such as radar, sonar, ultrasound imaging, seismic
imaging etc. However, we should note that in practical applications the inverse scattering
problem will never occur in the above idealized form. In particular, the far field pattern or some
other measured quantity of the scattered wave will be available only for observation directions
within a limited aperture either in the near or in the far field region. In addition, as it is the
case for example in applications of inverse scattering techniques in land mine detection, the
background might not homogeneous and then must be modelled as a layered medium.
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In this tutorial our main concern is with the issues of uniqueness and (stabilized)
reconstruction algorithms. In the subsequent section 2 we will address the issue of uniqueness.
After settling the uniqueness issue one might be tempted to ask for existence of solutions to
the inverse scattering problem. However, for inverse problems, in general, this is the wrong
question to ask. For inverse scattering problems, positive answers would need to characterize
far field patterns for which the corresponding total field vanishes on a closed surface and
this problem is beyond the capability of analysis. This is also reflected through the above
example for the ill-posedness of the inverse obstacle scattering problem. Therefore, after
settling uniqueness, the main task in inverse obstacle scattering is to design methods for the
approximate and stable solution under the assumption of a correct or a perturbed far field
pattern for a scatterer D. The remaining sections 3–5 will introduce the main ideas of iterative
methods, decomposition methods and sampling methods for approximately solving the inverse
obstacle scattering problem. Although most of our analysis in sections 3–5 can be extended
to the impedance and/or the Neumann boundary condition, we confine our presentation of
reconstruction methods to the case of the Dirichlet boundary condition.

For more detailed presentations of the current state of research in inverse obstacle scattering
we refer to the monographs [3, 7, 37] and the surveys [5, 9, 26, 39, 40].

2. Uniqueness
Since by Rellich’s lemma the far field pattern uniquely determines the scattered wave and
consequently the total wave in the exterior of the scatterer, the question of uniqueness for the
inverse problem is equivalent to the question whether the total wave can satisfy the boundary
condition (1.2) for two different domains D1 and D2. We immediately can exclude the case
where the two scatterers are disjoint, i.e., D1 ∩D2 = ∅. In this situation, the scattered wave us

is well defined in all of IR3, since it is defined in the exterior of both D1 and D2. Consequently,
the scattered wave us is an entire solution to the Helmholtz equation satisfying the radiation
condition and therefore it must be identically zero. However, then the total wave coincides with
the incident field and this leads to a contradiction, because the plane wave by itself cannot
satisfy the boundary condition. For the Dirichlet and Neumann condition this is obvious, since
the plane wave is given by an exponential function. For the impedance boundary condition,
Bui = 0 on ∂D would imply that ν · d + λ = 0 on ∂D. This, with the aid of λ ≥ 0 and λ 6= 0,
leads to a contradiction via

∫

∂D
λ ds =

∫

∂D
{ν · d + λ}ds = 0.

Hence, non-uniqueness can occur only when D1 ∩D2 6= ∅, and, presently, this case cannot be
excluded on the knowledge of the far field pattern for scattering of one incident plane wave only.
However, when we have overdetermined data in the sense that the far field pattern is known for
all incident directions we have the following classical uniqueness result for sound-soft scatterers
due to Schiffer.

Theorem 2.1 Assume that D1 and D2 are two sound-soft scatterers such that their far field
patterns coincide for an infinite number of incident plane waves with distinct directions and one
fixed wave number. Then D1 = D2.

Proof. Assume that D1 6= D2. By Rellich’s lemma for each incident plane wave ui the scattered
waves us

1 and us
2 for the obstacles D1 and D2 coincide in the unbounded component G of the

complement of D1 ∪D2. Without loss of generality, we can assume that D∗ := (IR3 \ G) \ D̄1

is nonempty. Then us
1 is defined in D∗, and the total field u = ui + us

1 satisfies the Helmholtz
equation in D∗ and the homogeneous boundary condition u = 0 on ∂D∗. Hence, u is a Dirichlet
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eigenfunction of −∆ in the domain D∗ with eigenvalue k2. The proof can now be completed by
showing that the total fields for distinct incoming plane waves are linearly independent, since
this contradicts the fact that for a fixed eigenvalue there exist only finitely many linearly inde-
pendent Dirichlet eigenfunctions of −∆ in H1

0 (D∗). ¤

Schiffer’s uniqueness result was obtained around 1960 and appeared as a private
communication in the monograph by Lax and Philipps [31]. We note that the proof presented
in [31] contains a slight technical fault since the above argument does not work if D∗ is replaced
by D2 \ (D1 ∩D2) for the case where the complement of D1 ∪D2 is not connected.

By analyticity the far field pattern is completely determined on the whole unit sphere by
only knowing it on some surface patch. Therefore, Schiffer’s result and, simultaneously, all
other results of this section carry over to the case of limited aperture problems where the far
field is only known on some open subset of Ω.

Using the strong monotonicity property of the Dirichlet eigenvalues of −∆, extending
Schiffer’s ideas, Colton and Sleeman [10] showed that a sound-soft scatterer is uniquely
determined by the far field pattern for one incident plane wave under the a priori assumption
that it is contained in a ball of radius R such that kR < π. More recently, exploiting the fact that
the wave functions are complex-valued, this bound was improved to kR < 4.49 by Gintides [13].

Schiffer’s proof cannot be generalized to other boundary conditions. This is due to the fact
that the finiteness of the dimension of the eigenspaces for eigenvalues of −∆ for the Neumann or
impedance boundary condition requires the boundary of the intersection D∗ from the proof of the
Theorem 2.1 to be sufficiently smooth. Therefore, a different approach is required for establishing
uniqueness for the inverse scattering problem for other boundary conditions. Assuming two
different scatterers that produce the same far field patterns for all incident directions, Isakov [19]
obtained a contradiction by considering a sequence of solutions with a singularity moving towards
a boundary point of one scatterer that is not contained in the other scatterer. He used weak
solutions and the analysis is technically involved. Later on, Kirsch and Kress [24] realized
that the proof can be simplified by using classical solutions rather than weak solutions and by
obtaining the contradiction by considering pointwise limits of the singular solutions rather than
limits of L2 integrals. Only after this new uniqueness proof was published, it was also observed
by the authors that for scattering from impenetrable objects it is not required to know the
boundary condition for the scattered wave as stated in the following theorem.

In the proof of that theorem, in addition to scattering of plane waves, we also need to consider
scattering of point sources Φ(· , z) with source location z ∈ IR3\D̄ given through the fundamental
solution

Φ(x, z) :=
eik|x−z|

4π|x− z| , x 6= z,

to the Helmholtz equation in IR3. We denote the corresponding scattered wave by ws(· , z) and
its far field pattern by w∞(· , z). Scattering by plane waves and by point sources is related
through the mixed reciprocity relation (see [26, 37])

us(z, d) = 4πw∞(−d, z), z ∈ IR3 \ D̄, d ∈ Ω, (2.1)

which is valid both for the sound-soft and impedance boundary condition.

Theorem 2.2 Assume that D1 and D2 are two scatterers with boundary conditions B1 and B2

such that the far field patterns coincide for all incident directions and one fixed wave number.
Then D1 = D2 and B1 = B2

Proof. Following Potthast [37] we simplify the approach of Kirsch and Kress through the use of
the mixed reciprocity relation (2.1). Let u∞,1 and u∞,2 be the far field patterns for plane wave
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incidence and let ws
1 and ws

2 be the scattered waves for point source incidence corresponding to D1

and D2, respectively. With (2.1) and two applications of Rellich’s lemma, first for scattering of
plane waves and then for scattering of point sources, from the assumption u∞,1(x̂, d) = u∞,2(x̂, d)
for all x̂, d ∈ Ω it can be concluded that ws

1(x, z) = ws
2(x, z) for all x, z ∈ G. Here, as in the

previous proof, G denotes the unbounded component of the complement of D1 ∪D2.
Now assume that D1 6= D2. Then, without loss of generality, there exists x∗ ∈ ∂G such that

x∗ ∈ ∂D1 and x∗ 6∈ D̄2. In particular, denoting by ν the outward unit normal to ∂D1, we have

zn := x∗ +
1
n

ν(x∗) ∈ G, n = 1, 2, . . . ,

for sufficiently large n. Then, on one hand we obtain that

lim
n→∞B1w

s
2(x

∗, zn) = B1w
s
2(x

∗, x∗),

since ws
2(x

∗, ·) is continuously differentiable in a neighborhood of x∗ 6∈ D̄2 due to reciprocity and
the well-posedness of the direct scattering problem with boundary condition B2 on ∂D2. On
the other hand we find that

lim
n→∞B1w

s
1(x

∗, zn) = ∞,

because of the boundary condition B1w
s
1(x

∗, zn) = −B1Φ(x∗, zn) on ∂D1. This contradicts
ws

1(x
∗, zn) = ws

2(x
∗, zn) for all sufficiently large n, and therefore D1 = D2.

Finally, to establish that λ1 = λ2 for the case of two impedance boundary conditions B1

and B2 we set D = D1 = D2 and assume that λ1 6= λ2. Then from Rellich’s lemma and the
boundary conditions, considering one incident field, we have that

∂u

∂ν
+ ikλ1u =

∂u

∂ν
+ ikλ2u = 0 on ∂D

for the total wave u = u1 = u2. Hence, (λ1−λ2)u = 0 on ∂D. From this, in view of the fact that
λ1 6= λ2, by Holmgren’s theorem (see [26]) and the boundary condition we obtain that u = 0
in IR3 \ D̄. This leads to the contradiction that the incident field must satisfy the radiation
condition. Hence, λ1 = λ2. The case when one of the boundary conditions is the sound-soft
boundary condition is dealt with analogously. ¤

Although there is widespread belief that the far field pattern for one single direction and
one single wave number determines the scatterer without any additional a priori information,
establishing this result still remains a challenging open problem. To illustrate the difficulty of
a proof, we consider scattering of the entire solution vi given by (1.5) from a sound-soft ball D
of radius R centered at the origin. Then from (1.7) we observe that the total field v vanishes
on the spheres with radius R + mπ/k centered at the origin for all integers m. This indicates
that proving uniqueness of the inverse obstacle scattering problem with one single incident plane
wave needs to incorporate special features of the incident field.

Some progress has recently be obtained by Cheng and Yamamoto [4], Alessandrini and
Rondi [1], and Liu and Zou [32] who established uniqueness with one incident plane wave for
polyhedral scatterers. Assuming that there exist two polyhedral scatterers producing the same
far field pattern for one incident plane wave, the main idea of their proofs is to use the reflexion
principle to construct a zero field line extending to infinity. However, in view of the fact that
the scattered wave tends to zero uniformly at infinity, this contradicts the property that the
incident plane wave has modulus one everywhere.
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3. Iterative methods
We now turn to reconstruction methods and as a first group we describe iterative methods. Here
the inverse problem is interpreted as a nonlinear ill-posed operator equation which is solved
by iteration methods such as regularized Newton methods, Landweber iterations or conjugate
gradient methods. The solution to the direct scattering problem with a fixed incident plane
wave ui defines an operator

A : ∂D 7→ u∞

that maps the boundary ∂D of the scatterer D onto the far field pattern u∞ of the scattered
wave. In terms of this operator, given a far field pattern u∞, the inverse problem just consists
in solving the nonlinear and ill-posed operator equation

A(∂D) = u∞ (3.1)

for the unknown surface ∂D.
In order to define the operator A rigorously, the most appropriate approach is to choose a

fixed reference domain D of class C2 and consider a family of scatterers Dh with boundaries
represented in the form

∂Dh = {x + h(x) : x ∈ ∂D},
where h : ∂D → IR3 is of class C2 and sufficiently small in the C2 norm on ∂D. Then we may
consider the operator A as a mapping from a ball V := {h ∈ C2(∂D) : ‖h‖C2 < a} ⊂ C2(∂D)}
with sufficiently small radius a > 0 into L2(Ω). However, for ease of presentation, we proceed
differently and consider only starlike domains, i.e., domains Dr that allow a parameterization
of the form

∂Dr = {r(x̂) x̂ : x̂ ∈ Ω} (3.2)

where r : Ω → IR is a positive function representing the radial distance from the origin. Then,
we may interpret the operator A as a mapping

A : {r ∈ C2(Ω) : r > 0} → L2(Ω), A : r 7→ u∞,

and, consequently, the inverse obstacle scattering problem consists in solving

A(r) = u∞ (3.3)

for the unknown radial function r.
Since A is nonlinear, we may linearize

A(r + q) = A(r) + A′(r)q + O(q2)

in terms of a Fréchet derivative A′(r). Then given a current approximation r for the solution of
(3.3) in order to obtain an update r + q instead of solving the full equation A(r + q) = u∞ we
solve the approximate linear equation

A(r) + A′(r)q = u∞ (3.4)

for q. We note that the linearized equation inherits the ill-posedness of the nonlinear equation
and thererfore regularization is required. As in the classical Newton iterations this linearization
procedure is iterated until some stopping criteria is satisfied.

The Fréchet differentiabitlity of the operator A is addressed in the following theorem.
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Theorem 3.1 The boundary to far field mapping A : r 7→ u∞ is Fréchet differentiable and the
derivative is given by

A′(r) : q 7→ vq,∞

where vq,∞ is the far field pattern of the solution vq to the Dirichlet problem for the Helmholtz
equation in IR3 \Dr satisfying the Sommerfeld radiation condition and the boundary condition

vq = −ν · x̂ ∂u

∂ν
q on ∂Dr (3.5)

with u = ui + us the total wave for scattering from the domain Dr.

The boundary condition (3.5) for the derivative can be obtained formally by differentiating
the boundary condition u = 0 on ∂Dr with respect to ∂Dr by the chain rule. It was obtained
by Roger [41] who first employed Newton type iterations for the approximate solution of inverse
obstacle scattering problems. Rigorous foundations for the Fréchet differentiability were given
by Kirsch [20] in the sense of a domain derivative via variational methods and by Potthast [33]
via boundary integral equation techniques. Alternative proofs were contributed by Kress and
Päivärinta [28] based on Green’s theorems and a factorization of the difference of the far field
for the domains Dr and Dr+q and by Hohage [16] and Schormann [42] via the implicit function
theorem.

To justify the application of regularization methods for stabilizing (3.4) one has to establish
injectivity and dense range of the operator A′(r) : L2(Ω) → L2(Ω). This is settled for the
Dirichlet and impedance boundary condition for large λ and remains an open problem for the
Neumann boundary condition [29]. In the classical Tikhonov regularization, (3.4) is replaced by
solving

αq +
[
A′(r)

]∗
A′(r)q =

[
A′(r)

]∗ {u∞ −A(r)} (3.6)

with some positive regularization parameter α and the L2 adjoint [A′(r)]∗ of A′(r). For details on
the numerical implementation, in particular on the choice of the regularization parameter, and
numerical examples in two dimensions we refer to [7, 15, 20, 25, 27] and the references therein.
The numerical examples strongly indicate that it is advantageous to use some Sobolev norm
instead of the L2 norm as penalty term in the Tikhonov regularization. Numerical examples in
three dimensions have been more recently reported by Farhat et al [12] and by Harbrecht and
Hohage [14].

In closing the section on Newton iterations we note as their main advantages that this
approach is conceptually simple and, as the numerical examples indicate, leads to highly accurate
reconstructions with reasonable stability against errors in the far field pattern. On the other
hand, it should be noted that for the numerical implementation an efficient forward solver is
needed and good a priori information is required in order to ensure convergence. In addition,
on the theoretical side, although some progress has been made through the work of Hohage [16]
and Potthast [38] the convergence of regularized Newton iterations for inverse obstacle scattering
problems has not been completely settled.

4. Decomposition methods
The main idea of so-called decomposition methods is to break up the inverse obstacle scattering
problem into two parts: the first part deals with the ill-posedness by constructing the scattered
wave us from its far field pattern u∞ and the second part deals with the nonlinearity by
determining the unknown boundary ∂D of the scatterer as the location where the boundary
condition for the total field ui + us is satisfied in a least-squares sense. In the potential method
due to Kirsch and Kress [23], for the first part, enough a priori information on the unknown
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scatterer D is assumed so one can place a closed surface Γ inside D. Then the scattered field us

is sought as a single-layer potential

us(x) =
∫

Γ
ϕ(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄, (4.1)

with an unknown density ϕ ∈ L2(Γ). In this case the far field pattern u∞ has the representation

u∞(x̂) =
1
4π

∫

Γ
e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω.

Given the far field pattern u∞, the density ϕ is now found by solving the integral equation of
the first kind

S∞ϕ = u∞ (4.2)

with the compact integral operator

(S∞ϕ)(x̂) :=
1
4π

∫

Γ
e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω.

Due to the analytic kernel of S∞, the integral equation (4.2) is severely ill-posed. For a stable
numerical solution of (4.2) Tikhonov regularization can be applied, that is, the ill-posed equation
(4.2) is replaced by

αϕα + S∗∞S∞ϕα = S∗∞u∞ (4.3)

with some positive regularization parameter α and the adjoint S∗∞ of S∞ : L2(Γ) → L2(Ω).
Given an approximation of the scattered wave us

α by inserting a solution ϕα of (4.3) into
the potential (4.1), the unknown boundary ∂D is then determined by requiring the sound-soft
boundary condition

ui + us = 0 on ∂D (4.4)

to be satisfied in a least-squares sense, i.e., by minimizing the L2 norm of the defect
∥∥ui + us

α

∥∥
L2(Λ)

over a suitable set of admissible surfaces Λ. Of course, instead of solving this minimization
problem we also can confine ourselves to visualizing ∂D by color coding the values the modulus
|u| of the total field u ≈ ui + us

α on a sufficiently fine grid over IR3.
Clearly, we can expect (4.2) to have a solution ϕ ∈ L2(Ω) if and only if u∞ is the far field

of a radiating solution to the Helmholtz equation in the exterior of Γ with sufficiently smooth
boundary values on Γ. Hence, the solvability of (4.2) is related to regularity properties of the
scattered wave which, in general, cannot be known in advance for the unknown scatterer D.
Nevertheless, it is possible to provide a solid theoretical foundation to the above procedure
(see [7, 23]).

The point source method of Potthast [34, 35, 37] can also be interpreted as a decomposition
method. Its motivation is based on Green’s representation for the scattered wave for a sound-soft
obstacle

us(x) = −
∫

∂D

∂u

∂ν
(y)Φ(x, y) ds(y), x ∈ IR3 \ D̄, (4.5)

and its far field pattern

u∞(x̂) = − 1
4π

∫

∂D

∂u

∂ν
(y) e−ik x̂·y ds(y), x̂ ∈ Ω, (4.6)
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that is, Huygen’s principle (see Theorem 3.12 in [7]). For z ∈ IR3 \ D̄ we choose a domain Bz

such that z 6∈ Bz and D̄ ⊂ Bz and approximate the point source Φ(·, z) by a Herglotz wave
function

Φ(y, z) ≈
∫

Ω
eik y·dgz(d) ds(d), y ∈ Bz (4.7)

with kernel gz. Under the assumption that there does not exist a nontrivial solution to the
Helmholtz equation in Bz with homogeneous Dirichlet boundary condition on ∂Bz, the Herglotz
wave functions are dense in H1/2(∂Bz) [8, 11] and consequently the approximation (4.7) can be
achieved uniformly with respect to y on compact subsets of Bz. Then we can insert (4.7) into
(4.5) and use (4.6) to obtain

us(z) ≈ 4π

∫

Ω
gz(x̂)u∞(−x̂) ds(x̂) (4.8)

as an approximation for the scattered wave us. Knowing an approximation for the scattered
wave, the boundary ∂D can be found as above from the boundary condition (4.4).

The approximation (4.7), for example, can be obtained by solving the ill-posed linear integral
equation ∫

Ω
eik y·dgz(d) ds(d) = Φ(y, z), y ∈ ∂Bz, (4.9)

via Tikhonov regularization and the Morozov discrepancy principle. Note that although the
integral equation (4.9), in general, is not solvable the approximation property (4.8) is ensured
through the above denseness result on Herglotz wave functions.

As a first advantage of the decomposition methods we note that with the idea of separating
the ill-posedness and the nonlinearity again they are conceptually straightforward. The second
and main advantage consists of the fact that their numerical implementation does not require
a forward solver. As a disadvantage, as in the Newton method of the previous section, if we
go beyond visualization of the level surfaces of |u| and proceed with the minimization, a good
a priori information on the unknown scatterer is needed. Furthermore, the accuracy of the
reconstructions is slightly inferior to that of the Newton iterations.

More recently a hybrid method combining ideas of decomposition methods and Newton
iterations of the previous section have been suggested [27, 30, 43]. In principle, this approach
may be considered as a modification of the potential method due to Kirsch and Kress in the
sense that the auxiliary surface Γ is viewed as an approximation for the unknown boundary
and, keeping ϕα fixed as a regularized solution of (4.2), update Γ via linearizing the boundary
condition (4.4) around Γ. For its brief description we assume the scatterer to be starlike and
recall the representation (3.2). Given a far field u∞ and a current approximation ∂Dr with
radial function r for the boundary surface, we solve ill-posed integral equation

1
4π

∫

∂Dr

e−ik x̂·yϕ(y) ds(y) = u∞(x̂), x̂ ∈ Ω,

by Tikhonov regularization and set

us(x) =
∫

∂Dr

eik|x−y|

4π |x− y| ϕ(y) ds(y), x ∈ IR3 \ ∂Dr.

Then we evaluate the boundary values of u = ui + us and its derivatives on ∂Dr via the jump
relations and find an update r + q by linearizing the boundary condition u|∂Dr+q

= 0, that is,
by solving

u|∂Dr
+ x̂ · gradu|∂Dr q = 0
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for q. In an obvious way, these two steps are iterated. Clearly, this approach does not require
a forward solver and connects ideas of Newton iterations and decomposition methods. From
numerical examples (see [27, 30, 43]) it can be concluded that the quality of the reconstructions
is similar to that of Newton iterations in the spirit of the previous section.

Without giving any details on the computations, in Fig. 1–4 we present some examples
for reconstructions by the above hybrid method obtained by Pedro Serranho. The numerical
quadratures were based on Wienert’s method [44] as described in section 3.6 of [7] and the radial
distance functions were approximated by linear combinations of spherical harmonics up to order
eight. In each example the figure on the left hand side gives the exact boundary shape, the
figure in the middle the reconstruction with one incident wave in direction of the arrow and the
figure on the right hand side gives the difference between the exact and the approximate radial
function. The reconstructions are obtained with 2% random noise added to the synthetic far
field pattern. The wave number is k = 1.
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Figure 1. Reconstruction of an acorn shaped domain.
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Figure 2. Reconstruction of a pinched acorn shaped domain.

5. Sampling methods
The main idea of sampling methods is to choose an indicator function f on IR3 such that its
value f(z) decides whether z lies inside or outside the scatterer D. In most cases, the indicator
function is designed in terms of the behavior of an ill-posed linear integral equation. To obtain
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Figure 3. Reconstruction of a star shaped domain.
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Figure 4. Reconstruction of a cushion shaped domain.

reconstructions the criterion is evaluated numerically for a grid of points. As opposed to the
two previous groups of methods, in principle, the sampling methods need full data u∞(x̂, d) for
all x̂, d ∈ Ω.

We begin by describing the linear sampling method as suggested by Colton and Kirsch [6].
Its basic idea is to find a Herglotz wave function

vi(x) =
∫

Ω
eik x·dg(d, z) ds(d), x ∈ IR3,

with kernel g, i.e., a superposition of plane waves, such that the corresponding scattered wave
vs coincides with a point source Φ(· , z) located at a point z ∈ D. To this aim we define the far
field operator F : L2(Ω) → L2(Ω) as integral operator with kernel given through the far field
pattern by

(Fg)(x̂) :=
∫

Ω
u∞(x̂, d)g(d) ds(d), x̂ ∈ Ω. (5.1)

Obviously, by superposition Fg is the far field pattern corresponding to scattering of the Herglotz
wave function with kernel g. Then, to achieve the above goal, we have to find the kernel g(· , z)
of the Herglotz wave function as a solution to the integral equation of the first kind

Fg(· , z) = Φ∞(· , z) (5.2)
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with the far field of the fundamental solution given by

Φ∞(x̂, z) =
1
4π

e−ik z·x̂.

Assume that g solves equation (5.2). Then, by Rellich’s lemma, we have that
∫

Ω
us(x; d)g(d, z) ds(d) = Φ(x, z), x ∈ IR3 \ D̄. (5.3)

Letting x tend to the boundary and using the boundary condition ui+us = 0 on ∂D we conclude
that the Herglotz wave function vi with kernel g is a solution to the interior Dirichlet problem

∆vi + k2vi = 0 in D (5.4)

with boundary condition
vi + Φ(· , z) = 0 on ∂D. (5.5)

Conversely, if the Herglotz wave function vi with kernel g solves (5.4)–(5.5) then its kernel g is
a solution of (5.2). Hence, if a solution g(· , z) to the integral equation (5.2) of the first kind
exists for all z ∈ D, then from the boundary condition (5.5) for the Herglotz wave function we
conclude that

‖g(· , z)‖L2(Ω) →∞
as the source point z approaches the boundary ∂D. Therefore, in principle, the boundary ∂D
may be found by solving the integral equation (5.2) for z taken from a sufficiently fine grid in
IR3 and determining ∂D as the location of those points z where ‖g(· z)‖L2(Ω) becomes large.

However, in general, the solution to the interior Dirichlet problem (5.4)–(5.5) will have an
extension as a Herglotz wave function across the boundary ∂D only in very special cases (for
example if D is a ball with center at z). Hence, the integral equation of the first kind (5.2) will
have a solution only in special cases. Nevertheless, by making use of the denseness properties of
the Herglotz wave functions as mentioned above, the following result can be established (see [6]).

Theorem 5.1 Under the assumption that there does not exist a nontrivial solution to the
Helmholtz equation in D with homogeneous Dirichlet boundary condition on ∂D, for every ε > 0
and z ∈ D there exists a function g(· , z) ∈ L2(Ω) such that

‖Fg(· , z)− Φ∞(· , z)‖L2(Ω) ≤ ε

and
‖g(· , z)‖L2(Ω) →∞, z → ∂D,

and the Herglotz wave function vi with kernel g(· , z) becomes unbounded

‖vi‖L2(D) →∞, z → ∂D.

From this it can be expected that solving the integral equation (5.2) and scanning the values
for ‖g(· , z)‖L2(Ω) will yield an approximation for ∂D through those points where the norm of
g is large. A possible procedure with noisy data ‖u∞,δ − u∞‖L2(Ω×Ω) ≤ δ with error level δ
is as follows. Denote by Fδ the far field operator F with the kernel u∞ replaced by the data
u∞,δ. Then for each z from a grid in IR3 determine gδ = gδ(· , z) by minimizing the Tikhonov
functional

‖Fδg
δ(· , z)− Φ∞(· , z)‖2

L2(Ω) + α‖gδ(· , z)‖2
L2(Ω),
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where the regularization parameter α is chosen according to Morozov’s generalized discrepancy
principle, i.e., α = α(z) is chosen such that

‖Fδg
δ(· , z)− Φ∞(· , z)‖L2(Ω) ≈ δ‖gδ(· , z)‖L2(Ω).

Then the unknown boundary is determined by those points where ‖gδ(· , z)‖L2(Ω) sharply
increases.

However there is a problem with the linear sampling method since is not clear whether the
regularized solution obtained for (5.2) by Tikhonov regularization via the discrepancy principle
actually provides an approximation in the sense of Theorem 5.1. A remedy, at least for the case
of a sound-soft obstacle, has been provided by Arens [2] through connecting the linear sampling
method to the factorization method that we are now going to describe as a second example of a
sampling method.

The drawback that for z ∈ D the integral equation (5.2), in general, is not solvable is remedied
through the factorization method due Kirsch [21]. In this method, (5.2) is replaced by

(F ∗F )1/4g(· , z) = Φ∞(· , z) (5.6)

leading to the following characterization of the scatterer D.

Theorem 5.2 Assume that there does not exist a nontrivial solution to the Helmholtz equation
in D with homogeneous Dirichlet boundary condition on ∂D. Then z ∈ D if and only if (5.6) is
solvable in L2(Ω).

For a proof we refer to [21, 22]. Comparing equations (5.2) and (5.6), the above results
can be interpreted in the sense that as compared with (F ∗F )1/4 the operator F itself is too
much smoothing since Φ∞(· , z) does not belong to its range F (L2(Ω)) if z ∈ D. The results
also imply that, in contrast to the linear sampling method, if Tikhonov regularization with the
regularization parameter chosen by the Morozov discrepancy principle is used to solve equation
(5.6) with noisy data u∞, then ‖g(·, z)‖ converges as the noise level tends to zero if and only
if z ∈ D. The most convenient approach to a numerical implementation of Theorem 5.2 is via
Picard’s criterion for the solvability of ill-posed linear operator equations in terms of a singular
system of F .

Both for the linear sampling method and the factorization method the indicator function f
is given through the norm f(z) := ‖g(· , z)‖L2(Ω) of the solutions to (5.2) and (5.6), respectively.
For Potthast’s [36, 37, 40] singular source method, that we now will consider as a third and final
example for sample methods, the indicator function is given by f(z) := ws(z, z) through the
value of the scattered wave ws(· , z) for the singular source Φ(· , z) as incident field evaluated at
the source point z. The values ws(z, z) will be small for points z ∈ IR3 \ D̄ that are away from
the boundary and will blow up when z approaches the boundary due to the singularity of the
incident field. Clearly, the singular source method can be viewed as a straightforward numerical
implementation of the uniqueness proof for Theorem 2.2.

Assuming the far field pattern for plane wave incidence to be known for all incident and
observation directions, the indicator function ws(z, z) can be obtained by two applications
of (4.8) and the mixed reciprocity principle (2.1). Combining (2.1) and (4.8) we obtain the
approximation

w∞(−d, z) =
1
4π

us(z, d) ≈
∫

Ω
gz(x̂)u∞(−x̂, d) ds(x̂).

Inserting this into (4.8) as applied to ws yields the approximation

ws(z, z) ≈ 4π

∫

Ω

∫

Ω
gz(d)gz(x̂)u∞(−x̂, d) ds(x̂) ds(d). (5.7)

Inverse Problems in Applied Sciences—towards breakthrough IOP Publishing
Journal of Physics: Conference Series 73 (2007) 012003 doi:10.1088/1742-6596/73/1/012003

14



The probe method as suggested by Ikehata [17, 18] uses as indicator function an energy
integral for ws(· , z) instead of the point evaluation ws(z, z). In this sense, it follows the
uniqueness proof of Isakov whereas the singular source method mimics the uniqueness proof
of Kirsch and Kress.

The theoretical foundation of sampling methods provides beautiful and exciting mathematics.
Their main advantage consists of their simple implementation and the fact that no a priori
information on the shape and location of the obstacle is required. In addition, in general, also
the boundary condition need not to be known in advance. On the other hand, as a disadvantage
the sampling methods require a lot of data and do not provide very sharp boundaries due to the
need to decide numerically the question on how large infinity is.

Acknowledgments
The author thanks Pedro Serranho for providing the numerical examples of section 4.

References
[1] Alessandrini G and Rondi L 2005 Proc. Amer. Math. Soc. 133 1685
[2] Arens T 2004 Inverse Problems 20 163
[3] Cakoni F and Colton D 2006 Qualitative Methods in Inverse Scattering Theory (Berlin: Springer)
[4] Cheng J and Yamamoto M 2003 Inverse Problems 19 1361
[5] Colton D, Coyle J and Monk P 2000 SIAM Review 42 369
[6] Colton D and Kirsch A 1996 Inverse Problems 12 383
[7] Colton D and Kress R 1998 Inverse Acoustic and Electromagnetic Scattering Theory 2nd. ed. (Berlin:

Springer)
[8] Colton D and Kress R 2001 Math. Meth. Appl. Sci. 24 1289
[9] Colton D and Kress R 2006 Inverse Problems 22 R49

[10] Colton D and Sleeman B D 1983 IMA J. Appl. Math. 31 253
[11] Colton D and Sleeman B D 2001 Proc. Edinburgh Math. Soc. 44 449
[12] Farhat C, Tezaur R and Djellouli R 2002 Inverse Problems 18 1229
[13] Gintides D 2005 Inverse Problems 21 1195
[14] Harbrecht H and Hohage T 2007 Jour. Integral Equations and Appl.
[15] Hohage T 1997 Inverse Problems 13 1279
[16] Hohage T 1999 Iterative Methods in Inverse Obstacle Scattering: Regularization Theory of Linear and

Nonlinear Exponentially Ill-Posed Problems (Linz, Dissertation)
[17] Ikehata M 1998 Inverse Problems 14 949
[18] Ikehata M 1999 Wave Motion 30 205
[19] Isakov V 1990 Comm. Part. Diff. Equa. 15 1565
[20] Kirsch A 1993 Inverse Problems 9 81
[21] Kirsch A 1998 Inverse Problems 14 1489
[22] Kirsch A 2000 Applicable Analysis 76 319
[23] Kirsch A and Kress R 1987 Boundary elements IX, Vol 3. Fluid Flow and Potential Applications ed Brebbia

et al (Berlin: Springer) p 3
[24] Kirsch A and Kress R 1993 Inverse Problems 9 285
[25] Kress R 1997 Boundary Integral Formulations for Inverse Analysis ed Ingham and Wrobel ( Southampton:

Computational Mechanics Publications) p 67
[26] Kress R 2001 Scattering ed Pike and Sabatier (London: Academic Press) p 52
[27] Kress R 2003 Inverse Problems 19 91
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