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Abstract. Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has
been established that WR stars are massive stars at advanced evolutionary stages and that
their surrounding nebulae result from the interactions between the stellar mass loss and the
ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic
Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686
line emission, indicating stellar effective temperatures of 90 − 100 × 103 K. The shocked fast
stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have
not been able to reproduce the observed X-ray spectral properties. Elemental abundances of
WR nebulae consisting of synthesized stellar material can constrain stellar evolution models,
but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR
nebula and the background interstellar medium for accurate abundance analyses.

1. Wolf-Rayet stars and their nebulae

The first three nebulae around Wolf-Rayet (WR) stars were reported in 1965 by Johnson and
Hogg [1]: NGC2359, NGC6888, and S308. The ring-like morphology of these WR nebulae is
indicative of a shell structure. It was immediately suggested that stellar outflows implied by the
broad P Cygni line profiles were responsible for shaping the nebulae, although the evolutionary
status of WR stars was not well known and the outflows were later called fast stellar winds.

Models of massive star evolution have been guided by observations, in particular, the
distribution of massive stars in the Hertzsprung-Russel diagram (HRD) plotted in stellar effective
temperature (Teff) versus bolometric magnitude (MBol) by Humphreys and Davidson [2]. An
absence of very luminous red stars in the HRD was observed, and this so-called Humphrey and
Davidson Limit provided essential constraints to models of stellar evolution. It is now known that
the most massive O stars, ∼ 60M� or higher, evolve off the main sequence to become luminous
blue variables (LBVs), while the less massive O stars evolve into red supergiants (RSGs). During
the LBV and RSG stages, stellar mass loss strips off the hydrogen-rich envelope to expose the
helium-rich layer, and the star enters the WR phase.

Owing to its high luminosity, massive stars lose mass throughout their lifetime. During the
main sequence, O stars have fast stellar winds; during the LBV or RSG phase, a dense slow
wind develops; and during the WR phase, a dense fast stellar wind emerges. The velocities and
mass loss rates of these winds are shown in the chart in Figure 1.

As a massive star evolves through different phases, its mass loss interacts with the ambient
medium that has been modified by the previous mass loss. It is conceivable that a main-sequence
O stars fast stellar wind will sweep up the ambient interstellar medium (ISM) into an interstellar
bubble [3,4], the slow winds of LBVs and RSGs form circumstellar nebulae in the bubble interiors,
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and finally the WR wind sweeps up the circumstellar material to form a circumstellar bubble
inside the interstellar bubble. An example of such nested bubbles, NGC6164-5, is shown in the
left panel of Figure 2.

The formation of planetary nebulae (PNe) is very similar to the formation of circumstellar
bubbles of WR stars. As a low- or intermediate-mass star evolves into a red giant or asymptotic
giant branch (AGB) star, the copious mass loss forms a circumstellar nebula, and during
the subsequent evolution toward white dwarf, a fast stellar wind develops and sweeps up the
circumstellar nebula to form a PN [5,6]. The right panel of Figure 2 shows a PN, where the
bright main shell consists of the swept-up AGB wind and the surrounding envelope unperturbed
AGB wind.

Figure 1. Stellar mass loss at different stages of stellar evolution. Stellar wind velocity and
mass loss rates are listed.

Figure 2. Left: Ground-based image of NGC 6164-5. The small (2 pc ×3 pc) nebula around
the central star is a circumstellar bubble consisting of ejected stellar material, while the large
(10 pc ×15 pc) shell is the interstellar bubble consisting of interstellar material. The central star
is of spectral type O6.5f?p, not yet a WR star. Image credit: Don Goldman. Right: Hubble
Space Telescope WFPC2 image of NGC 6826. The bright inner shell is a bubble consisting of
swept-up AGB wind, while the envelope contains uninterrupted expanding AGB wind.
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Figure 3. Images of WR nebulae. The spectral types of the central WR stars are marked
above each column. Image credits: Hubble Space Telescope (M1-67), Don Goldman (WR16,
RCW58), Bob Franke (NGC6888), Travis Rector (WR134), Robert Gruendl and You-Hua Chu
(S308, RCW104), ESO/VLT (NGC2359), Velimir Popov and Emil Ivanov (NGC3199).

2. Observed morphologies of WR nebulae

Owing to the high qualities of affordable telescopes/CCD cameras/filters, amateur astronomers
have been taking the best images of WR nebulae and made them available on the web. Figure
3 shows 9 Galactic WR nebulae associated with WR stars of different subtypes. There is an
apparent correlation between the nebular morphology and the spectral type.

Most WR nebulae are associated with WN stars. The nebulae associate with late-type WN8
stars are dominated by stellar ejecta [7], and have the clumpiest morphology. Despite the
large surface brightness fluctuations, the expansions of these nebulae are quite regular [8,9]. In
contrast, the nebulae associated with early-type WN4 stars consist of mostly interstellar material
[7,10]. The intermediate WN stars, WN5-6, show circumstellar bubble with various degrees of
ablation by the fast WR winds.

The morphologies of WR nebulae have been satisfactorily reproduced by hydrodynamic
models of nebular evolution from main sequence O to WR stages, taking into account of the
mass loss history [11,12,33,34,35,36]. The clumpy morphology of circumstellar bubbles is caused
by instability in the shell when the circumstellar material (the slow wind from the LBV or RSG
phase) has been swept up.

An intriguing puzzle is that the interstellar bubble blown by a WR stars main-sequence
progenitor is rarely observed. In fact, main-sequence O stars are hardly ever seen in interstellar
bubbles, despite theoretical expectations [3,4]. To solve this puzzle, Hubble Space Telescope
images of the H II region N11B around the OB association LH10 were obtained. LH10 still
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contains O3V stars, the most massive main sequence stars, indicating that this OB association
has not had any supernova explosion yet, and the presence of dense ionized gas in N11B should
allow O stars to blow interstellar bubbles. The Hubble images do not show any ring-like
morphological features corresponding to bubbles; however, long-slit echelle spectrograms of the
[N II] λ6583 line (Figure 4) do show line splitting indicating the existence of expanding shells of
sizes ∼ 15 pc and expansion velocities 15 − 20 km s−1 [13]. For such low expansion velocities,
line-split cannot be seen in the Hα line because of its large thermal width, ∼ 20 km s−1, so they
have escaped detection in the past. The absence of visible ring-like morphological features in
Hα image is also caused by the low expansion velocity: for the 10 km s−1 sound velocity of a
104 K H II region, the expansion of the bubble is associated with very weak shocks, with Mach
number of 1.5− 2. Such weak shocks do not produce strong compression of the ISM to produce
a density jump for a visible limb-brightened shell nebula. The puzzle is solved.

Figure 4. Three long-slit echelle spectrogram of [N II] λ6583 line centered on O stars in
LH10/N11B. The horizontal axis is along the slit and the vertical axis is along the dispersion.
The star names are marked next to the stellar continua.

3. Extragalactic WR nebulae

WR nebulae have been surveyed in the Large and Small Magellanic Clouds (LMC and SMC)
[14,15]. Recent Hα survey of the LMC made with the CTIO Blanco 4m telescope and the
MOSAIC camera has been used to study WR nebulae (in preparation). The examples displayed
in Figure 5 show significantly more details than previous images taken with Curtis Schmidt
Telescope. Some WR nebulae seem to be attached to the inner rims of superbubbles. Often the
WR nebulae are best seen in the [O III] λ5007 line because they have higher excitation than
the background H II region, for example, the WR bubble around Br12 in DEM L45 (Figure 5).
From the surveys of the WR nebulae in the LMC and SMC, we have learned that the large shell
structures around WR stars identified in low-resolution images are mostly superbubbles with
sizes greater than ∼ 100 pc [14], and that high-resolution images are needed to reveal small
circumstellar bubbles of WR stars.

Surveys of WR nebulae have been extended to M31 and M33 in the Local Group [16,17]. The
ground-based images used in these surveys are of relatively low resolution. While many small
WR nebulae (smaller than ∼ 40 pc in diameter) are identified as candidates of WR bubbles,
their structures are not well resolved; furthermore, a significant fraction of the WR nebulae
identified are actually superbubbles around OB associations.

11th Pacific Rim Conference on Stellar Astrophysics IOP Publishing
Journal of Physics: Conference Series 728 (2016) 032007 doi:10.1088/1742-6596/728/3/032007

4



Figure 5. Images of WR nebulae in the LMC. The Hα images of Br2, Br10, and Br100 were
taken with the CTIO 4m MOSAIC camera. The MCELS [O III] λ5007 image of Br12 was taken
with the Curtis Schmidt Telescope.

4. He II-emitting WR nebulae

Unlike PNe, H II regions photoionized by main-sequence massive stars do not emit He II

recombination lines because O stars do not have temperatures much higher than ∼ 50, 000
K; however, some He II regions ionized by WR stars exhibit He II λ4686 line emission,
indicating that He is doubly ionized and that the stellar effective temperatures are as high
as 85, 000−100, 000 K. Examples include G2.4+1.4 around the WO star WR102 in the Galaxy
[18], N79 around the WN2 star Br2 in the LMC, and N76 around the WN2 star AB7 in the
SMC [19]. See Figure 6.

5. Hot gas in WR nebulae

Circumstellar bubbles of WR stars are ideal laboratories to study a number of astrophysical
problems: hydrodynamic interactions between fast stellar winds and circumstellar material,
stellar wind energy feedback, and thermal conduction between hot gas and cool gas. The
bubble interior filled by shocked fast wind is expected to emit in X-rays, while the conduction
layer between the hot interior gas and the cool bubble shell gas contains highly ionized species
produced by thermal collisions, and is best studied in ultraviolet wavelengths. Multi-wavelength
observations are needed to obtain thorough understandings of WR bubbles.

X-ray emission from the hot gas in bubble interiors is first detected in the WR nebula NGC
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Figure 6. Left - Hα and He II λ4686 images of Br2 in the LMC [19]. Middle - Hα and He II

λ4686 images of AB7 in the SMC [19]. Right - optical spectrum of G2.4 + 1.4 around WR102
in the Galaxy [18].

6888 using Einstein Observatory data [20]. ROSAT observations of the WR bubble S308 show
hint of diffuse X-ray emission [21]. XMM-Newton observations of S308 confirmed the diffuse X-
ray emission and produced its first useful X-ray spectrum; furthermore, XMM-Newton mapped
S308 and presented a complete X-ray view of S308 [22,23]. Recently, XMM-Newton observations
detected faint diffuse X-ray emission from the interior of WR bubble NGC 2359 [24,25]. The
X-ray spectra of these three WR bubbles are very soft, and thermal plasma emission model
fits indicate that the hot gas temperatures are only 1 − 2 × 106 K (Figure 7) [26]. As the
emission measure is proportional to the density squared, the diffuse X-ray emission from a
bubble interior should peak near the conduction layer where the density is high and temperature
is low, qualitatively in agreement with the plasma temperatures implied by the X-ray spectra.
However, hydrodynamic models of bubbles taking into account of thermal conduction, dynamic
mixing, and radiative cooling have not been able to reproduce the very soft spectra of diffuse
X-ray emission from WR bubbles [27].

Thermal conduction layers in bubbles or superbubbles had been studied with C IV and
Si IV absorption lines, but the early investigations using International UV Explorer (IUE)
observations of early-type stars yielded ambiguous results because C3+ and Si3+ can be produced
by photoionization. The first unambiguous detection of conduction layer was provided by HST
GHRS observations of the N V absorption line against the spectrum of HD50896, the central
WR star of S308 [28]. Attempts to use HST STIS observations to detect N V λλ1238,1242 lines
in emission from the interface layer of S308 has not been successful.

PNe have much higher density than WR bubbles, so their interface layers can be more easily
detected. For example, O VI λλ1031,1037 lines and N V λλ1238,1242 lines have been detected
both in emission (off the central star) and absorption (against the stellar spectra) in the Cat’s
Eye PN, NGC 6543 [29,30].
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Figure 7. X-ray spectra of the hot gas in the WR bubbles S308, NGC2359, and NGC6888. The
X-ray observations of S308 and NGC2359 were made with the XMM-Newton X-ray Observatory,
and the X-ray observation of NGC6888 was made with the Chandra X-ray Observatory. This
figure is taken from [26].

6. Stellar evolution constrained by WR nebular abundances

Circumstellar bubbles of WR stars contain material ejected by the progenitors. Depending
on the previous evolutionary paths, whether through LBV or RSG, the stellar ejecta consist
of processed stellar material whose elemental abundance reflects the nature of the WR stars’
progenitors [7]. It is difficult to determine elemental abundances of WR bubbles because they
are more often than not superposed on bright H II regions, and the background H II region
contamination needs high-resolution spectra to identify and remove it. Figure 8 shows high-
dispersion spectra of RCW58 and NGC6888; it can be seen that the background H II region has
a nearly constant velocity throughout the slit length and the approaching and receding sides of
the WR bubble appear blue- and red-shifted from the H II region component, respectively [9].
It is interesting to note that despite the large surface brightness variations, the expansion of the
WR bubble is quite regular.

High-dispersion spectra covering all essential nebular lines have been obtained and analyzed
for abundance only for the WR bubble NGC6888 [31,32]. These studies investigated trace of the
CNO cycle and determined that the progenitor of the WR star in NGC6888 had an initial mass
between 25 and 40M�. Advances in modern instrumentation have made it possible to obtain
high-dispersion spectra for large wavelength ranges (e.g. 3700 − 7400 Å, the High-Dispersion
Spectrograph of the Subaru Telescope) so that bubble and background H II region components
can be resolved and analyzed separately. Future observations should be made systematically for
WR bubbles of different spectra types and physical properties, so that their abundances can be
compared with those expected from models of stellar evolution. WR bubbles from galaxies of
different metallicities should also be studied to see how metallicity affects stellar evolution.
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