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Abstract. A mathematical or computational model in evolutionary biology should necessary
combine several comparatively fast processes, which actually drive natural selection and
evolution, with a very slow process of evolution. As a result, several very different time scales
are simultaneously present in the model; this makes its analytical study an extremely difficult
task. However, the significant difference of the time scales implies the existence of a possibility
of the model order reduction through a process of time separation. In this paper we conduct
the procedure of model order reduction for a reasonably simple model of RNA virus evolution
reducing the original system of three integro-partial derivative equations to a single equation.
Computations confirm that there is a good fit between the results for the original and reduced
models.

1. Introduction

Due to very high mutation and replication rates combined with high recombination abilities,
RNA viruses are able to evolve very fast. This high evolvability makes RNA viruses a convenient
experimental model in evolutionary biology and, at the same time, presents a serious problem,
as viral evolution is probably the most important single factor accountable for the emergence of
new pathogens and the development of drug resistance by existing ones.

Despite its apparent relevance, so far the development of mathematical or computational
models of viral evolution which can be used in combination with experimental studies in
evolutionary biology, remains a challenge even for such a simple object as RNA virus. In order
to be useful in biological research, a mathematical model should be based on explicitly stated
basic principles, postulates and hypotheses and allow a transparent interpretation of both results
and parameters. In other words, a useful model should be essentially mechanistic. This implies
that in evolutionary biology such a model must include a combination of factors responsible for
natural selection (which drives evolution) and a mechanism for describing evolution. However,
the factors generating the selection pressure act on a time scale comparable with an average
generation time, or a life span of a single entity, whereas evolution is a comparatively slow process
of accumulation of small changes that progresses through many generations to be evident. As
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a result, the model unavoidably includes multiple time scales which differ by several orders of
magnitude. Computational or analytical handling of such models usually is a highly non-trivial
task. In the case of viral evolution this discrepancy is further complicated by the fact that a
typical generation times of virus and the hosts differ by orders of magnitude as well.

Besides phenomenological models, such as models suggested by Tsimring, Levin and Kessler
[1] or Sasaki [2] and Sasaki and Haraguchi [3, 4], are free of the mentioned drawbacks.
However, the use of phenomenological models as a compliment to experimental research is
usually questionable, as such models are rather illustrative than explanatory, and interpretation
of models’ parameters and obtained results in connection with an experimental layout is
problematic.

These arguments imply that an ideal model should be mechanistic, include a number of
properties of a real-life system and, at the same time, it should be sufficiently simple to allow
analysis.

A relatively simple mathematical model of RNA virus evolution was recently suggested by
Korobeinikov and Dempsey [5]. This mechanistic model is an extension of Nowak—May HIV
model [6], where viral phenotypes (strains) are assumed to be distributed in a continuous
phenotype space, and random mutations are described by dispersion. For the sake of simplicity,
Korobeinikov and Dempsey formulated the model on a basis of the 2-dimensional Wodarz—
Christensen-Thomsen, or Wodarz, model [7]. The latter is a reduction of the original 3—
dimensional Nowak—May model under an assumption that the population of free virus particles
is proportional to the infected cells population. However, an analytical study of even this
comparatively simple model still is a highly challenging task, and it can be expected that for a
more complex model, which includes factors, such as immune response or a therapy, the analysis
would be even more difficult.

As we mentioned above, to a large extent the model complexity arises as a result of the
presence of multiple processes progressing at very different time scales. Thus, the original
Nowak—May model combines three processes and three time scales, namely (i) the proliferation
of the uninfected target cells, (ii) the infectious process and infected cells’ life cycle, and, finally,
(iii) free virus life cycle. In the Wodarz model, which was used as a basis for model in [5], one of
these processes, namely the free virus life cycle, is omitted and replaced by the assumption that
the free virus population is proportional to the infected cells population. The latter makes the
model slightly simpler. However, model in [5] includes evolution which occurs on a comparatively
slow timescale. Accordingly, the model is a slow—fast system.

The considerable differences of the timescales, which make the model difficult for both
computer simulation and analysis, at the same time, indicate that the model can be simplified
using the process known as time scales separation (for instance, see [8, 9, 10]). In this paper we
carry out such a scale separation. As a result, the model RNA virus evolution in [5] is reduced
to a single equation. Simulations demonstrate that apart from a comparatively short transition
period there is a good fit of results for both, the full and the reduced models.

We would like to stress that the result is not limited by the specific model introduced in [5].
As the presence of multiple time scales which differ by a several orders of magnitude is typical
for mechanistic models in evolutionary biology, the same technique can be applied to any such
model.

2. The model

As a basis for modelling, we employ the Nowak—May model of HIV dynamics [6]. This model
describes interactions of three populations, namely uninfected target cells (for HIV, the target
cells are T helper, or Th cells), infected target cells, and free virus particles, of concentrations
u(t), V(t) and X (t), respectively. The model postulates that there is a continuous influx of the
target cells (from the thymus, where they mature) at a rate b, that free virus particles infect
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target cells at a rate aXu, that the infected cells produce free virus particles at a per capita rate
k, and that average life spans of the uninfected cells, infected cells and the free virus particles
are 1/q, 1/m and 1/¢, respectively. Under these assumptions the model equations are

dzgt) — b aX(ult) - qult),
d‘;ft) = aX(Hult) - mV(D), (1)
ix

(t)
7 = kV(t) —cX(t).
The global qualitative behavior of this model is well studied and is known to be completely
determined by the basic reproduction number of the virus (or that of infected cells, as for this
model these numbers coincide) Ry = abk/cmq [11, 12, 13, 14].

Let us assume now that multiple viral strains are possible and are distributed in a continuous
phenotype space. For model (1) a viral variant is characterized by parameters o, k,c and m,
and hence it could be assumed that the phenotype space is 4—dimensional. However, it is known
(and we will demonstrate this further) that for the Nowak-May model (1) these parameters are
not independent: as we mentioned, for this model the viral dynamics is completely characterized
by the basic reproduction number Ry which usually serves as a measure of the Darwinian fitness
of the virus. In other words, in the framework of the Nowak-May model a viral phenotype
is uniquely characterized by the single number R, and, therefore, it suffices to consider a 1-
dimensional phenotype space M = {s € (0,00)}. Then fitness Ry is a function of variable
s. (The graph of this function is usually referred to as a “fitness landscape” .) The variables
v(t,s) and z(t, s) are strain-specific and hence are the density distributions of the infected cells

population and the virus in the phenotype space, whereas the total infected cells population
o

and the total viral load are V(t) = [ v(t,s)ds and X (t) = [ x(t, s)ds, respectively. New strains
0 0

emerge as a result of random mutations which in a continuous phenotype space can be modelled
by dispersion.

In the Nowak—May model coefficients «, m, k and c¢ are attributed to a phenotype, and
hence these are function of s. We assume that a = a(s) = a’ag(s), m = m(s) = mmg(s),
k = k(s) = k%q(s) and ¢ = ¢(s) = Pcy(s), where a® ,;m®, £ and ¢ are coefficients of a wild
strain (or a phenotype at the beginning of evolution), ag(s), mo(s), ko(s) and co(s) are non—
dimensional functions and mg(s), ko(s), co(s) = 1 for this wild phenotype. These assumptions
lead to the following system of equations:

dq:lit) = b— u(t)/a(S)x(t, s)ds — qu(t),
0
ov(t,s 0*u(t, s
B2) (s utt o) + als) ) ot )+ ), )
ox(t,s)
P = k(s)v(t,s) —c(s) z(t, s).

Note that coefficients b and ¢ are characteristics of target cells, and hence these remain constant.

This system of equations should be complemented by initial and boundary conditions.
At s = 400 the natural boundary conditions for v(t,s) and z(t,s) are zeros. At s = 0
ov(t,0)

= 0. Initial conditions are u(0) = u?,

for convenience we use no-flux conditions

s
v(0,5) = v%(s), #(0,5) = 2%(s), where u",v%(s),2%s) > 0. Here time ¢ is measured in days
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and variable s is non-dimensional. Furthermore, u(t) is measured in cells - mm=2; v(t, s) and
x(t,s) are the densities of cells and free virus particles in the phenotype space, and hence
these are measured in cells - mm™> and virions - mm™2; cell production rate b is measured in
cells-mm™3 - day~"; per capita mortality rates ¢, m, k and ¢ are measured in day ™', infectivity
a is in mm? - virions™! - day~!, and dispersion coefficient y is in day~!.

A model of such type (based on the 2-dimensional Wodarz model, which is, in turn, a
reduction of the 3-dimensional Nowak-May model) was introduced in [5], and simulations
with this model revealed a number of practically relevant outcomes. In particular, the model
demonstrates the behavior which closely resembles the observed development of HIV infection.
However, an apparent drawback of this model is that even in its present form its analytical study
is a challenging task. A further development of the model, which could involve an incorporation
of factors such as immune response and a therapy, would make the model more complicated
and its analysis even more difficult. The complexity of this model is a result of an interaction
of multiple processes with very different time scales. Thus, the original Nowak—May model
(1) combines three processes and three time scales, namely (i) the proliferation of uninfected
target cells, (ii) the process of infection and infected cells’ life cycle, and, finally, (iii) the free
virus particles life cycle. Compared with the Nowak—May model, model (2) includes the process
of evolution, which, in comparison, is a very slow process, and hence model (2) is a slow-fast
system. The presence of four considerably different timescales indicates that model (2) can be
significantly simplified if we separate the timescales.

3. Timescales separation
Let us denote t = T't, s = S5 and

u(Tt) =Uu(t), o(Tt,Ss)=Vuv(t,5), =z(Tt,Ss5) =Xz(5),
and assume that
T—;, S =1, U—g, X—C—OV, V =1 (cells/s).

Substituting these into system (2), we obtain a non—dimensional system

du TR
e = 1- / ga(s)guazds — a, (3)
0
v bk m(3)_ 0%
EAING a7 — b+ o 4
5 a(s)uqcoux . v+ 552 (4)
5V% = k(5)v - ¢(5)z, (5)

where ¢ = u/q and v = ¢/c°. Initial and boundary conditions for this system are, respectively,

1 1

a(0) = Ju(0), (0.8) = Zv(0.5), 7(0,5) = Lw(0.5)
and
ou(t,0) S
55 = 0, glggov(t,s) =0.

Both numbers, ¢ = u/q and v = q/c°, are small parameters; for instance, for parameters,
which were used in [5] and which correspond to a real life HIV case from [15], v ~ 2 - 1073 and
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¢ ranges from 5-107° to 5-1073. That is, system (3)—(5) is a singularly perturbed (“slow-fast”)

system, and its size can be reduced using the scale separation technique [8]. This procedure

corresponds to assumptions that (i) there is a stable slow manifold such that all solutions

converge to this manifold, and hence (ii) the values of fast variables u(t) and z(t, s) converge to

quasi-equilibrium values which slowly vary as the system progresses along the slow manifold [9].
Let v = 0, then equality

k(3)v = ¢(5)z
holds. Substituting this equality into (3) and (4), we obtain equations

5% = 1—0/q,8(5)uvds—u, (6)
v b . m(3)_ 0%
o _ b _ o 7
G = oA . @
where 3(5) = «(38)k(8)/c(8). System (6), (7) was suggested in [5].
Now let € = 0, then
o 1 o
B 1 ____1+5\(t)’
1+/fﬁ(s)vds
5 q
where \(t) = [ éB(E)@dg is the non—dimensional infection force. (Please recall that the

0

o0
dimensional infection force is usually defined as A(t) = [ B(s)v(t,s)ds.) Substituting this
0

equality into (7), we finally obtain a single equation

o _ _ (R (5) 0%
ot m(s)(lij\ _1)U 952’ (8)

When A(t) < g, that is when the reduction of the uninfected population due to infection is
small, equation (8) can be further simplified: in this case we can employ the Taylor expansion
and use the approximate equality

Then



MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012007 doi:10.1088/1742-6596/727/1/012007

4. Numerical simulations

Following [5], and for the sake of simplicity, we assume that the diversity of viral phenotypes
is described by a single parameter «(s) which can be interpreted as the efficiency of a single
virus particle in infecting a target cell; the other parameters are assumed to be constant and
the same for all genotypes. To some extent this assumption is justified by the fact that for
the Nowak—May model genotypes fitness is defined by a single number Ry = ?TZZ . Under this
hypothesis, and taking into consideration that Ry is a function of all six parameters, it should
make no difference which of these six parameters is varying in the phenotype space. The choice
of a(s) is just a matter of convenience, because the direct dependence of Ry on « simplifies the
notation.

Results of numerical analysis are presented at the following figures. (For convenience of
comparison, results in these figures are shown for physical dimensional variables.) For these
simulations we use the following values for the system parameters: b = 20 cells - mm™> - day™*,
m = 0.8 day™!, ¢ = 0.02 day™', k = 10* day~' and ¢ = 8 day~!. These parameters correspond
to patient 2 in [15]. For simplicity we assume a linear landscape, postulating that a(s) = as.
Here a = 8- 1077 mm? - cells~! - day™!; this implies that Ry = 1.25s. All simulations are for
pw=10"% day!.

Simulations demonstrate an excellent fit of results obtained for system (6), (7) and equation

(8).

Uninfected cells Total concentration of infected cells

1000 257

)
S
1

8004

%3
1

600

>
1

400+

Concentration of uninfected cells ( cells/mnr’)
Concentration of infected cells ( c'e[lx/mml)

200+

w
1

Time (years) Time (years)

Figure 1. Uninfected cells concentration u(t) and total infected cells concentration V' (t) for
system (6), (7) (thin line) and equation (8) (bold line).

Figure 1 shows that results for these two systems perfectly coincide everywhere apart from
a comparatively short transition period. (We have to remind that equation (8) is unable to
describe the transition dynamics at all.) If the initial conditions are taken on or near the slow
manifold, then the results for these two systems coincide everywhere (see Fig. 2).
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Figure 2. Solutions of system (6), (7) (thin line) and equation (8) (markers), when initial
condition is taken on the slow manifold.

However, a match of results for systems (3)—(5) and (6), (7) (and hence for equation (8))
is only qualitative. Figure 3 demonstrates that system (3)-(5) exhibits a slower evolution,
producing outcomes which are delayed in time, compared with these for system (6), (7), or
equation (8).
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Figure 3. Uninfected cells concentration u(t) and total infected cells concentration V(t) for
system (3)—(5) (bold line) and (6), (7) (thin line).

We suppose that this effect is caused by a continuous accumulation of a small delay, caused
by the third equation of the Nowak—May model (2), over a long period of evolution.

5. Summary

Due to the fact that a mathematical model in evolutionary biology should necessary combine
the factors, which characterize natural selection and drive evolution, and which acts on a
comparatively fast time scale, and a very slow process of evolution itself, such a model is complex
and its analysis is difficult. However, a combination of several time scales within a model suggests
that such a model can be significantly simplified using the scale separation techniques. For
ODE such technique is based on the famous Tikhonov’s theorem. The mathematical models in
evolutionary biology are usually formulated as integro—differential equations and PDE. However,
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with some reservations the same concepts can be applied to these equations as well (for instance,
see [10, 16, 17]).

In this paper we execute the scale separation for a RNA virus evolution model which is based
on the 3—-dimensional Nowak—May model. As a result of this procedure, the original system
of three integro—partial differential equations is reduced to a single integro—partial differential
equation, describing the dynamics of infected target cells v(¢,s). The other variables, namely
the uninfected cells u(t) and free virus particles z(t, s), are expressed as explicit functions of
variable v(t, s). Numerical simulations show an acceptable fit of the solution of the original and
the reduced models.

A specific feature of this particular model, which is based on the Nowak—May model
specifically tailored to describe the HIV dynamics, is that target cells are assumed to be
immigrating from the thymus at a constant rate. However, the same concept and the same
techniques can be applied to a model of evolution based on any other model of virus dynamics.
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