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Abstract. One of the analytical methods of presenting solutions of nonlinear partial
differential equations is the method of special series in powers of specially selected functions
called basis functions. The coefficients of such series are found successively as solutions of
linear differential equations. To find recurrence, the coefficient is achieved by the choice of basis
functions, which may also contain arbitrary functions. By using such functional arbitrariness,
it allows in some cases to prove the global convergence of the corresponding constructed series,
as well as the solvability of the boundary value problem.

1. Introduction
Method of special series [1, 2, 3] is a method of representation of solutions of nonlinear partial
differential equations in the form of series by the powers of one or several functions chosen in
a special way which allows the series’ coefficients to be calculated recurrently without applying
any truncation procedures. In the sequel, these functions are called as basic functions [4]. When
the well-known Fourier method is used for linear equations, the coefficients are also calculated
recurrently. For nonlinear case, the variables cannot be usually separated and the superposition
principle is inapplicable. If the solutions are represented by Fourier series, one or another
truncation procedure is usually used to derive the final system of equations, from which the
coefficients are to be determined. In the most cases, a characteristic feature of special series is
that the construction is independent of the type of nonlinear equation being solved, although the
study of convergence of these series is sure to be closely related to the type of the equation. The
approaches more closed to the special series method of obtaining solutions of partial differential
equations are related to characteristic expansions investigated in the works of R. Courant [5].

In contrast to the power Taylor series, which converge only for the Cauchy-Kovalevskaya
equations under the conditions of analyticity of the problem initial data, the constructed series
can converge for wider classes of equations and systems.

In some cases, it is possible to exactly satisfy zero boundary conditions by choosing the basis
functions (for example, for description of nonlinear vibrating string with fixed end points [1],
or membrane with fixed edges [6]). In other cases, it is possible to satisfy a predetermined
boundary condition by using the functional arbitrariness contained in the basic functions [7].
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In some cases, it is possible to prove global convergence of the constructed series, including
in unlimited domains, where the use of numerical methods meets essential difficulties.

Construction of solutions in the form of series with recurrently calculated coefficients allows
to investigate properties for meaningful problems. For example, these series were used for study
new properties of the audio line for Lin–Reissner–Tsien equation [8]. Note that the various
representations of the solutions of this equation were also obtained in the form of convergent
series in powers of special basic functions with functional arbitrariness [9].

In some cases, it was possible to construct the basis functions that take into account presence
of known exact solutions, as well as the specific character of non-linear equations. For example,
these series were built and studied in [10, 11]. Sometimes, constructed series turn into finite sums
and then obtain the exact solution [12], which allows their use for testing numerical methods
[13, 14], and for numerical algorithms, taking into account the asymptotics of solutions in these
problems [15]. In this paper, new results are obtained related to investigation of the convergence
of series for a class of nonlinear evolution equations.

2. General scheme of the series with recurrently calculated coefficients
Let us consider one of constructions of special series for solving the Cauchy problem for nonlinear
partial differential equations of the form

ut = F

(
t, u,

∂u

∂x
, · · · , ∂

mu

∂xm

)
, u(0, x) = u0(x), (1)

where F is a polynomial of the unknown function u(t, x) and its derivatives with respect to the
space variable. The solution is represented by the series

u(t, x) =
∞∑
n=0

un(t)Pn(t, x) (2)

by the powers of basic function P (t, x) satisfying the overdetermined system

Px = A(t, P ), Pt = B(t, P ) (3)

with functions A(t, P ) and B(t, P ) being analytic respect to P and such that A(t, 0)≡0 and
B(t, 0)≡0. It was shown that if the initial conditions are written in the form

u0(x) =
∞∑
n=0

u0nP
n(0, x), (4)

then substituting series (2) into equation (1), collecting similar terms, and taking into account
relations (3), we obtain the sequence of first-order ordinary differential equations for the
coefficients un(t)

u
′
n = Fn(t, un, . . . , u0), un(0) = u0n, n = 1, 2, . . . (5)

where the right-hand sides Fn include only uj with j ≤ n and the coefficients un may be linearly
contained only.

3. Investigation of convergence of special series to the solution of nonlinear
evolution equations
The use of special series with basic functions with functional arbitrariness to construction of
solutions of various types of nonlinear partial differential equations is considered. Proof of
convergence of the constructed series depends on the type of equations to be solved.
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3.1. Generalized Korteweg–de Vries equations
As an example, we mention the construction of the series (2) for Korteweg-de Vries
(KdV) equation with initial condition u(0, x)=u0(x) in the form of (4). Basic function

P (x, t)=
1

exp bx+f(t)
, f(t) ∈ C1[0,∞), b > 0 (6)

is used, which satisfies system (3) for

A(t, P )=−bP+bf(t)P 2, B(t, P )=−f(t)′P 2

with an arbitrary function f(t). Convergence of series (2), (6) is proved for all x≥0, t≥0, if
0≤f(t)≤( 3

√
2−1)/(2− 3

√
2) [2]. At x=0, the arbitrary function f(t) gives rise to a new boundary

condition u(0, t)=h(t). We can try to find the function f(t) from the function h(t) [7].
Consider an initial-boundary value problem for the nonlinear evolutionary equation

∂u

∂t
+ γ

∂2r+1u

∂x2r+1
+ F

(
t, u, . . . ,

∂2ru

∂x2r

)
= 0, γ = const (7)

with initial conditions (4) and boundary condition at x = 0

u(0, t) = h(t), h(t) ∈ C1[0,∞), h(t)− u0 6= 0, t ≥ 0. (8)

The well-posedness of the initial-boundary value problem for the generalized KdV equation
(r=1, F=(g(u))x) was considered for the class of generalized functions in [16, 17]. One of the
conditions of solvability of the mixed problem is the condition

|g(u)| ≤ (|u|10/3 + |u|), ∀u ∈ R. (9)

We find a solution of equation (7) in the form of series (2) with basic function (6) and
coefficient u0(t) = u0 = const. Then the solution of equations (5) has the form

un(t)= exp(bnt)

u0n+

t∫
0

exp(−bnτ)[(n−1)f ′(τ)un−1+Rn(τ, uν)]dτ

 ,
where bn = const and the expressions Rn(τ, uν) include only functions uν with ν < n [7].

For x = 0 and t = 0 the compatibility condition

h(0) = h0 = u0 +
∑
n≥1

u0n
(1 + f0)n

, f(0) = f0

must be fulfilled. To satisfy boundary condition (8) for t ≥ 0, it is necessary to show that there
exists a function f(t) such that the equality

h(t) = u0 +
∑
n≥1

un(t, f(t))

(1 + f(t))n

is valid. Taking into account the estimates obtained for the proof of the convergence of the
constructed series in powers of the basic functions with a functional arbitrariness to construct
the solution of a generalized KdF equation [18], we can prove the following theorem.

Theorem 1. Let the following conditions be fulfilled:
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1. |u0n| ≤Mn−m, 0 < M ≤M0, n ≥ 1, m = 2r + 4, u0 > 0;
2. 0 < f(t) ≤M1, t ≥ 0.
Then there exists a unique function f(t) ∈ C1[0, T0], M0,M1, T0 = const such that problem

(7), (4) and (8) has a solution for −∞ < x ≤ 0 and 0 ≤ t ≤ T0.

Remark 1. Thus, it is shown that using special series with functional arbitrariness one may
solve initial-boundary value problems for an important class of evolutionary equations (7), for
which restriction (9) on the nonlinear function increasing may be not fulfilled.

3.2. Nonlinear wave equations
Let consider the Cauchy problem for nonlinear wave equation

utt = uxx +G(t, u), (10)

ut(x, 0) = u1(x), u(x, 0) = u0(x). (11)

Here, G(t, u) is a polynomial by the unknown function u(x, t) with the coefficients which are
continuous functions of t. Let initial conditions (11) be represented in the form of convergent
series by the powers of function (6)

uν(x) =
∞∑
n=0

un,νP
n(0, x), un,ν = const, ν = 1, 2. (12)

Then a solution of problem (10), (10), (12) also may be constructed in the form of the series
(2), (6). The coefficients un(t) after substitution of series (2), (6) into (10) and equating the
expressions of the same powers P (x, t), will be found from a sequence of linear second order
differential equations

u′′n − b2n2un = Ln(t, f) +Rn(t), n ≥ 0, (13)

where Ln(t, f) is the following expression

Ln(t, f)=f ′′un−1+2(n−1)f ′u′n−1−b2f(n−1)nun−1−b2(n−1)2un−1

+[b2f2−(f ′)2](n−2)(n−1)un−2,

related to the linear terms in equation (10), and Rn(t) is an expression, related to nonlinear
function G(t, u). By this, the coefficients uk(t) of series (2), (6) are included into expressions
Ln(t, f) and G(t, u) with k ≤ n− 1, that allows to find the coefficients of the series successively.

Initial conditions for the equation (13) are determined by constant un,ν , ν = 1, 2 in initial
conditions (11)

un(0) = un,0, u′n(0) = un,1 + (n− 1)f ′(0), n ≥ 1. (14)

The following theorem is valid.
Theorem 2. Let the following conditions be fulfilled:
1. |un,0| ≤ M

6n4 , |un,1| ≤ Mb
6n3 , M > 0, n ≥ 1;

2. f(t) ∈ C2[0,∞), 0 < q1 ≤ f(t) ≤ q, |f ′(t)| ≤ q, |f ′′(t)| ≤ q, q1, q > 0, t ≥ 0.
Then there are exist constants M0 > 0 and q0 > 0, that for M ≤ M0 and q ≤ q0 series (2),

(6) converges to a solution of the Cauchy problem (10), (11), (12) for all x ≥ 0 and 0 ≤ t ≤ T ,

where T = ln(1+q0)
2b .

Proof. Solutions of the sequence of linear second order differential equations (13), (14) have
the form

un(t)=An exp(bht)+Bn exp(−bnt)+ 1

bn

t∫
0

sh(bn(τ−t))(Ln(τ, f)+Rn(τ))dτ, n ≥ 1, (15)
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where constants An and Bn are determined from initial conditions (14)

An +Bn = un,0, Anbn−Bnbn = un,1.

To investigate convergence of series (2), (6) we estimate the coefficients of the series un(t).
In contrast to estimations of the series which is used to solve equation (7), for nonlinear wave
equation (10) it is necessary to estimate and the derivatives of these coefficients up to the second
order. At the same time in the assessments, we cannot use the same inductive assumption that
for equation (7). It is related to the difference of types of ordinary differential equations for the
series coefficients un(t).

In the considered case of nonlinear wave equation the following estimations are valid:

|un(t)| ≤ M exp(2bnt)

n4
, n ≥ 1, (16)

|u′n(t)| ≤ Mb exp(2bnt)

n3
, n ≥ 1, (17)

|u′′n(t)| ≤ 4Mb2 exp(2bnt)

n2
, n ≥ 1, (18)

which are proved by induction.
We carry out the proof on the base of example of inequality (16). One notes that for n = 0

u0(t) = A0 + B0t. Obviously, an estimation like (16) is valid for u0(t). We can assume that
inequality |u0(t)| ≤M exp(2bt) is valid.

For n = 1, taking into account (15), there is

u1(t)=A1 exp(bt)+B1 exp(−bt)+e−bt

2b

t∫
0

f ′′(τ)(A0τ+B0)e
bτdτ−e

bt

2b

t∫
0

f ′′(τ)(A0τ+B0)e
−bτdτ.

Let estimate the series coefficient u1(t).

|u1(t)| ≤M exp(2bt)
( |A1|e−bt

M
+
|B1|e−3bt

M
+

q

6b2
+

q

2b2

)
≤M exp(2bt)

(1

6
+

1

6
+

2q

3b2

)
. (19)

For q0 ≤ b2/2 from inequality (19), it follows that inequalities (16) are valid for n = 1. Thus,
induction assumption (16) is proved for n = 1. Assuming that the inequality (16) is valid for
n = N , it is easy to prove this inequality and n = N + 1. Let estimate expression LN+1(t),
which contains the series coefficients uk(t) for k ≤ N corresponding the linear part of (10).

|LN+1(t)| ≤Mqe2bNt
( 2b

N3
+

b2qN

(N − 1)3
+

1

N3
+

2b

N2
+

qN

(N − 1)3

)
. (20)

Using inequality (20), we obtain the following estimation for the integral:

1

b(N + 1)

t∫
0

sh(b(N + 1)(τ−t))|LN+1(τ, f)|dτ ≤ M exp(2b(N + 1)t)

3(N + 1)4
. (21)

Note, that for b ≥ 1 value of q0 it is possible to estimate. In this case for q0 = 1/27, estimation
(21) is valid. T.i. the second condition of Theorem 2 is used only for estimating terms of
LN+1(t, f), which correspond to the linear part of the equation (10). These restrictions on
arbitrary function f(t) are similar to those of an arbitrary function in Theorem 1.
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Estimating expression RN+1(t), we use the condition M ≤ M0, where M0 is determined
by the form of nonlinear function G(t, u). Constant M0 we may choose so that the following
inequality will be fulfilled

1

b(N + 1)

t∫
0

sh(b(N + 1)(τ−t))|RN+1(τ, f)|dτ ≤ M exp(2b(N + 1)t)

3(N + 1)4
. (22)

Thus, inequality (21), (22) prove inequality (16). Similarly, inequality (17), (18) can be proved.
Inequalities (16)–(18) allow to prove convergence of series (2), (6). Indeed,

|u(x, t)| ≤
∞∑
n=0

|un(t)|Pn(t, x) ≤ |u0|+
∞∑
n=1

M exp(2bnt)

n4
Pn(t, x) ≤ |u0|

+M
∞∑
n=1

exp(2bnt)

n4(1 + q0)n
≤ |u0|+M

∞∑
n=1

e2bTn

n4(1 + q0)n
.

Similarly one can prove the convergence of the series corresponding derivatives ut, utt, ut, uxx.
Consequently, series (2), (6) converge to a solution of the Cauchy problem (10), (11), (12)

for all x ≥ 0 and 0 ≤ t ≤ T , where T = ln(1+q0)
2b . Theorem 2 is proved.

Remark 2. Proven estimates for the coefficients and convergence of (2), (6) to a solution of
the Cauchy problem in a semi-infinite region in x allow to hope to prove existence of solutions of
the initial-boundary value problem (10), (11), (12) with the given boundary condition at x = 0
by choosing an arbitrary function f(t) and the second boundary condition, given in the form
u(+∞, 0) = u0 due to the specificity of the base function (6) tends to zero when x→ +∞. The
choice of such a function f(t) is currently still open.
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